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Side iii 

Preface to the second edition 

This book is intended to provide undergraduate students with basic understanding of machine 

element theory, and to introduce tools and techniques facilitating design calculations for a 

number of frequently encountered mechanical elements. The material in the book is appropriate 

for a course in Machine Elements and/or Mechanical Engineering Design for students who have 

passed first and second year basic courses in engineering physics, engineering mechanics and 

engineering materials science. 

At the end of each chapter in the book, references, which may be useful for further 

studies of specific subjects or for verification, are given. Students who wish to go deeper into 

the general theory of machine elements may find the following textbooks inspiring: 

• Norton, R. L., "Machine Design, an integrated approach", Prentice-Hall, 2014. 

• Shigley, J. E. and Mischke, C. R., "Mechanical Engineering Design", McGraw-Hill, 

2004. 

Students are encouraged to find supplement information from other sources such as 

International and National Standards, Internet Catalogues and information provided by 

companies (online or paper based). Those who are in command of the German language will 

find numerous German textbooks of very high standard. Outstanding in quality is the textbooks 

by Niemann and co-authors. 

• Niemann, G., Winter,H., Hohn, B. "Maschinenelemente", Springer Verlag, Band I, 

2005. 

• Niemann, G., Winter,H., "Maschinenelemente", Springer Verlag, Band II, 2003. 

• Niemann, G., Winter,H., "Maschinenelemente", Springer Verlag, Band III, 1983. 

• Decker, K., "Maschinenelemente, Funktion, Gestaltung und Berechnung", Carl 

Hanser Verlag, 2011 

and an overall mechanical engineering reference book can be recommended as helpful during 

the study, and afterwards in your professional engineering life as well: 

• DUBBEL: Taschenbuch fiir den Maschinenbau, Springer Verlag, 2014. 

In this second edition of the book the misprints in the first edition have been corrected 

and some chapters have been extended. A new chapter on 2D joint kinematics has also been 

added to the book. 

Copenhagen, June 2014 

Peder Klit and Niels L. Pedersen 
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Chapter 1 Limits, fits and surface properties 

1.1 Introduction 

The technical and technological development continuously provokes manufacturing of new and 

more attractive products. Products that "a short time ago" were good and competitive are now 

outdated or too expensive to produce. It is an ongoing challenge to design for easy and 

economical production and at the same time fulfil the functional demands. 

Product costs mainly originate in design and the designer has a prime responsibility to 

ensure that the product gives optimum value for money. Cost is just as much an attribute of the 

design specification as is performance, appearance, reliability, life, safety etc., and is an essential 

factor to be satisfied by the optimum design solution. A design that fails to meet its cost 

specification is no better than one that fails to satisfy the performance requirements. 

Furthermore, when all other factors are equal, the decision by the customer whether or not to 

buy a product is largely determined by its cost. 

Total product cost is the addition of manufacturing cost and selling cost and is shown 

graphically in Figure 1.1. 

The essence of good design must be the provision of optimum value within the product 

specification. Any excursion beyond the upper and lower limit of technical merit will rapidly 

turn a situation of profit into one of loss. Within these limits, there must be upper and lower 

quality limits set to maximize the profit from the product [ 1 ]. 

Specifications related to manufacturing 

Looking at the quality demands for the manufacturing of a product it is important to notice that 

there is a lower as well as an upper limit to respect. When designing a product it is, next to basic 

functional demands, important to analyze which productional demands are to be stated for the 

single components. This includes everything from choice of material, specification of surface 

characteristics (form and surface texture) and to dimensions (tolerances on lengths, diameters, 

angles). 

1.2 Geometrical tolerances 

It maybe required to specify that the faces of a component are flat, parallel, perpendicular to 

others etc. This is done on drawings by specifying a geometrical tolerance. For instance, the 

cylinder head on a piston compressor does need to be flat, where it interfaces with the 

crankcase, which of course also needs to be flat. It does on the other hand not need to have very 

accurate size tolerances. Cylindrical components may also need geometrical tolerances. Again 

using the piston compressor as an example, the crankshaft will almost certainly need 

geometrical tolerances. Several bearing surfaces need to be concentric with each other. The only 

way to guarantee concentricity is to use one surface as a datum and 
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[billedtekst start]Figure 1.1: Graph illustrating total product cost.[billedtekst slut] 

use geometrical tolerances, in order to ensure that the other surfaces do not deviate outside of 

the limit specified. 

The scope of specifying geometrical tolerances on technical drawings is to limit 

deviations of form, orientation, location and run-out for technical products to be produced. A 

detailed description is given in [2], 

Geometrical tolerances shall be specified only where they are essential for the function. 

Indicating geometrical tolerances does not necessarily imply any particular methods of 

production, measurement or gauging. 

A geometrical tolerance applied to a feature defines the tolerance zone within which the 

feature (surface, axis, or median plane) is to be contained. 

1.2.1 Specifying geometrical tolerances 

The tolerance requirements are shown in a regular frame that is divided into two or more boxes. 

These boxes contain from left to right: 

- the symbol for the characteristic to be tolerance 



 

- the tolerance value 
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- if appropriate, the letter or letters identifying the datum feature or features. 

 

[billedtekst start]Figure 1.2: Examples of geometrical tolerance specifications.[billedtekst slut] 

1.2.2 Toleranced features 

The tolerance frame is connected to the toleranced feature by a leader line terminating with an 

arrow in the following way: 

- on the outline of the feature 

- as an extension of a dimension line, when the tolerance refer to the axis defined by the 

feature so dimensioned, or 

- on the axis when the tolerance refers to the axis. 

 

[billedtekst start]Figure 1.3: Examples of tolerance frames connected to features.[billedtekst 

slut] 

Features & tolerances Toleranced characteristics Symbols 

Single features Form tolerances 

Straightness  

Flatness  

Circularity  

Cylindricity  

Related features 

Orientation tolerances 

Parallism  

Perpendicularity  

Angularity  

Location tolerances 
Position  

Concentricity & coaxiality  



 

Symmetry  

Run-out tolerance Circular run-out  

Figure 1.4: Examples of symbols for toleranced characteristics. 
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Descriptions Symbols 

Toleranced feature indications 

direct  

by letter 

 

Datum indications direct 
 

by letter 

 

Figure 1.5: Examples of identifying datum features. 

 

 

[billedtekst start]Figure 1.6: The width of the tolerance zone is in the direction of the arrow of 

the leader line joining the tolerance frame to the feature, unless the tolerance zone is preceded 

by the sign Ø.[billedtekst slut] 

1.3 Surface texture 

Every surface has some form of texture that consists of a series of peaks and valleys distributed 

over the surface. These peaks and valleys vary in height and spacing, and have properties that 

are a result of the way the surface was produced. For example, surfaces produced by cutting 



 

tools tend to have uniform spacing with defined cutting directions, whilst those produced by 

grinding have random spacing. 

The ability of a manufacturing operation to produce a specific roughness depends on 

many factors. For example, in end mill cutting, the final surface depends on the rotational speed 

of the end mill cutter, 
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the velocity of the traverse, the feed rate, the amount and type of lubrication at the point of 

cutting, and the mechanical properties of the piece being machined. A small change in any of 

the above factors can have a significant effect on the surface produced. 

Measuring surface finish. In the past the evaluation of surface texture was done by comparing 

the surface to be measured with standard surfaces. A modern surface measuring instrument 

consists of a stylus with a small diamond tip, transducer, a traverse datum and a processor. The 

surface is measured by moving the stylus across the surface. As the stylus moves up and down 

along the surface, the transducer converts this movement into a signal which is then exported to 

a processor that converts it into a number and usually a visual profile. 

1.3.1 Surface Texture Parameters 

The identification of the surface texture uses a number of parameters. These are different 

depending on the standard used and on the issue of the relevant standard. 

1.3.2 Surface Texture Parameters 

The identification of the surface texture uses a number of parameters. These are different 

depending on the standard used and on the issue of the relevant standard. 

Ra - Arithmetical mean deviation. Graphically, the average roughness is the area 

between the roughness profile and its center line divided by the evaluation length (normally 

five sampling lengths equals one evaluation length). 

 

 

[billedtekst start]Figure 1.7: Sketch showing definition of Ra.[billedtekst slut] 

 

or, if the surface profile is measured in equidistant discrete points 

 

Rq - Root mean square (rms). This roughness specification is often used in the US. 

 



 

or, if the surface profile is measured in equidistant discrete points 
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Rz - Mean peak-to-valley profile roughness. The average peak-to-valley profile 

roughness is based on one peak and one valley per sampling length. The single largest 

deviation is found in five sampling lengths and then averaged, see Figure 1.8. 

 

 

[billedtekst start]Figure 1.8: Sketch showing definition of Rz (ISO).[billedtekst slut] 

 

The Rz-specification is slightly better than the Ra-specification to ensure good functional 

characteristics for the surface, but in fact none of the two secures a good bearing surface with 

good resistance to wear. 

Rt - Maximum peak-to-valley height. 

Rt = max(z) – mm(z) (1.6) 

For most roughness distributions we find that 

Ra < Rq < Rz < Rt (1.7) 

and further the estimates 

 

and 

Ra ≌  0.lRz (1.9) 

As seen in Figure 1.9 two surfaces with very different bearing characteristics could have 

the same Ra and Rz values. Especially for surfaces sliding on each other as in bearings, efforts 

have been made to develop a new method of specifying demands to the surface texture. 

ISO 13565-2:1996 [6] defines a number of roughness parameters that may be used to 

characterize a surface in a more functional way than the classical parameters as for example Ra. 



 

The parameters Rpk, Rk, Rvk, Mr1, and Mr2 (see Figure 1.10) are all derived from the bearing 

ratio curve based on the ISO 13565-2:1996 standard. The bearing area curve is a measure of the 

relative cross-sectional area of a plane, passing through the measured surface, from the highest 

peak to the lowest valley. 
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  Rz Ra 

Parabola curve 
 

1 0.26 

Parabola curve 
 

1 0.26 

Figure 1.9: Sketch showing lack of functionality in Rz and Ra. 

• Rpk, the reduced peak height is a measure of the peak height above the nominal/core 

roughness. These peaks will be the areas of most rapid wear when the machine is 

running. 

• Rk, the core roughness depth is a measure of the nominal or "core" roughness (peak-to-

valley) of the surface with the predominant peaks and valleys removed. It is the long 

term running surface which will influence the performance and life of the surface. (Also 

the load bearing area of the surface). 

• Rvk, the reduced valley depth, is a measure of the valley depth below the nominal /core 

roughness. It is a measure of the oil retaining capability of the valleys of the surface 

produced during the machining process (for example plateau honing). 

• Mr1, the peak material portion, indicates the percentage of material that comprises the 

peak structures associate with Rpk. Where the Rpk and Rk depths meet on the material 

ratio curve. 

• Mr2, the valley material portion, relates to the percentage of the measurement area that 

comprises the deeper valley structures given by 100% Mr2. Where the Rvk and Rk 

depths meet on the material ratio curve. 

• A1, is the ’peak area’ of the material ratio curve. It is calculated as the area of a right 

angled triangle of base length 0% to Mrl and height Rpk. 

• A2, is the ’valley area’ of the material ratio curve. It is calculated as the area of a right 

angled triangle of base length Mr2 to 100% and height Rvk. 

A high Rpk implies a surface composed of high peaks providing small initial contact 

area and thus high areas of contact stress (force/area), when the surface is contacted. Thus Rpk 

may represent the nominal height of the material that may be removed during a running-in 

operation. Consistent with Rpk, Mr1 represents the percentage of the surface that may be 

removed during running-in. Rk represents the core roughness of the surface over which a load 

may be distributed, once the surface has been run-in. Rvk, is a measure of the valley depths 

below the core roughness and may be related to lubricant retention and debris entrapment. Rk 

is a measure of the nominal roughness (peak to valley) and may be used to replace parameters 

such as Ra, Rt or Rz, when anomalous peaks or valleys may adversely affect the repeatability of 



 

these (i.e. Ra, Rt and Rz) parameters. 

The ratios of the various bearing ratio parameters Rpk/Rk (the reduced peak to core 

ratio), Rvk/Rk (the reduced valley to core ratio), and Rpk/Rvk (the reduced peak to reduced 

valley ratio) may be helpful in further understanding the nature of a particular surface texture. 

In some instances, two surfaces with indistinguishable roughness average (Ra) may be easily 

distinguished by a ratio such as Rpk/Rk. For example a surface with high peaks as opposed to a 

surface with deep valleys may have the same Ra, but with vastly different Rpk/Rk and Rvk/Rk 

values. 

By considering the ratios such as Rpk/Rk, Rvk/Rk and Rpk/Rvk one may determine 

quantitatively the dominance of peak structures relative to valley structures. In typical 

tribological applications such as seals and brakes, these ratio may be useful in differentiating 

surfaces that have similar surface roughness as measured by Ra. 
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[billedtekst start]Figure 1.10: Definition of Rk, Rpk and Rvk from ISO 13565-2:1996 

[6].[billedtekst slut] 

Specifying surface texture requirements on drawings Examples are given in Figure 1.11, 

where the following definitions apply 

A = Surface texture requirements 1, Ra in micrometers 

B = Surface texture requirements 2, Rz or Rt in micrometers 

C = Manufacturing process - Turned, ground, plated . . . 

D = Surface lay and orientation 

E = Machining allowance 

 

[billedtekst start]Figure 1.11: The surface texture symbols.[billedtekst slut] 

Only quote surface texture where needed. Drilled through holes for bolts need normally 

no requirements for the surface texture. Bored holes for tight fits on the other hand require a 

surface quality corresponding to the tolerance specifications. 

Guidelines for selection of a suitable surface finish When specifying a surface finish one 

should first pay attention to the function, and secondly to the manufacturing possibilities and 

price. Outer 
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surfaces without specific mechanical function often have to be specified according to "look", 

"feel" or "clean" conditions. (Ex. instruments for surgery or food processing machines). Surfaces 

with specific requirements for assembly conditions can be specified according to the following 

table. 

Table 1.1: Guidelines for Arithmetical Average Roughness Ra. 

Guidelines for Average Roughness Ra[μm] 0.05 0.1 0.2 0.4 0.8 1.6 3.2 6.3 

Gauges for dimension control. Parts for roller 

bearings. High speed journal bearings. Surfaces 

for high capacity journal bearings. 

-xX XX XX XX-     

Normal bearings and guidance surfaces. 

Translating and rotating parts against 

sealingŠs. Surfaces for coating to mirror blank 

purposes. 

  -xx XX XX XX-   

Normal for high stressed shafts. Static surfaces 

with contact to rubber sealingŠs. Surfaces for 

coating. Seats for ball and roller bearings. 

   -xx XX XX XX-  

Plain surfaces to be sealed without a gasket. 

Contacting surfaces for accurate details. Flanks 

on splines, threads and similar details. 

    -xx XX Xx-  

Plain surfaces to be sealed with a gasket. 

Normal contacting surfaces in assemblies. 

Flanks on splines, threads and similar details. 

     -xx XX Xx- 

Surfaces without specific mechanical function 

demands. 

      -xx XX→ 

Another guideline for permissible surface roughness can be derived from functional demands 

specified by tight tolerances. It is obvious that fine tolerances in a fit are of no relevance if 

combined with a "rough surface". 

Empiric formulas link permissible roughness value to specified tolerance grade IT (See 

definition later in this chapter). 

 

Example: 



 

A shaft end has to be machined to 03Ok6 (prepared for mounting a coupling) The average 

roughness to be specified is: 

 

closest standardized value to be chosen is Ra = 1.6μm 

1.4 Tolerances on lengths, diameters, angles. 

Appropriate manufacturing of components require that the dimensions specified on drawings, 

need to show the acceptable upper and lower limits of size. Within reason, these limits should 

be as generous as possible in order to keep down manufacturing costs. Obviously, there are 

situations where it is necessary 
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[billedtekst start]Figure 1.12: Sketch showing surface profile, and limits of size for cylindrical 

object.[billedtekst slut] 

to quote very tight limits in order to provide a particular fit. For instance, it may be necessary 

for two components that have the same nominal dimensions to be assembled with a transition 

fit, or the components may need to be pressed together. Clearly the limits on the size of the 

components, will dictate the kind of fit obtainable. Generally, the designer cannot leave any 

dimension without a size tolerance. Most dimensions can be covered by an overall drawing 

tolerance, but areas where particular fits are necessary, need to be identified and given 

appropriate tolerances. Interchangeability of components is one of the major reasons for using 

tolerances. It is impossible to guarantee that components will fit together without using 

comprehensive tolerance specification on interfaces. It is necessary to be able to produce 

components in batches at any time, in different locations and still be able to guarantee the fit. 

Imagine you are going to buy a spare part for your car or motor cycle and find that it will not be 

able to fit, because the size is incorrect. The manufacturer must be able to rely on the tolerance 

specified on the drawing in order to be able to produce fully interchangeable components with 

the correct interfacing condition. On the other hand, one off or prototype components and 

assemblies do not necessarily need comprehensive tolerances. It is often sufficient to allow one 

component to be machined to fairly relaxed tolerances whilst specifying the mating component 

to be machined to a specific fit, quoting only the clearance or interference required. 

1.4.1 Dimensions and tolerances 

When dimensioning components it is appropriate to distinguish between functional dimensions 

and dimensions of less importance for the function, but necessary for the manufacturing. A 

third class of dimensions is for general information, but of minor importance for function and 

manufacturing. All functional dimensions are to be limited with tolerances such that adequate 

functions will be achieved. These limits are used to define the lower and the upper limit of size. 

The difference between these two dimensions is called the tolerance. The tolerance is the 

workspace for the production. It is important to realize that the tolerance must not be regarded 

as an uncertainty in the production. 

Tolerance definitions: 

Actual size (of a part): The size of a part as obtained by measurement. 



 

Maximum limit of size: The greater of the two limits of size. 

Minimum limit of size: The smaller of the two limits of size. 

Basic size; nominal size: The size from which the limits of size are derived by the application of 

the upper and lower deviations. See Figure 1.13. The basic size can be a whole number 

or a decimal number, e.g. 32; 8.75; 0.5; etc. 
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[billedtekst start]Figure 1.13: Tolerance definitions.[billedtekst slut] 

 

Actual deviation: The algebraically difference between the actual size and the corresponding 

basic size. 

Lower deviation: The algebraically difference between the minimum limit of size and the 

corresponding basic size. 

Upper deviation: The algebraically difference between the maximum limit of size and the 

corresponding basic size. 

Tolerance: The difference between the maximum limit of size and the minimum limit of size, or 

(in other words) the algebraic difference between the upper deviation and the lower 

deviation. The tolerance is an absolute value without sign. 

1.4.2 Fits 

Fits are the (before) assembly relations between two or more parts, all with their own 

tolerances. The ordinary fit calculations are in one plane and very often only in one direction. A 

fit calculation result in either a clearance or an interference. Interferences are normally only 

acceptable for shaft and hub connections to make a shrink fit or a pressure fit. 

Fits definitions 

Clearance: The positive difference between the size of the "hole" and the "shaft" before 

assembly, when the dimension of the shaft is smaller than the dimension of the hole. See 

Figure 1.14. 

Interference: The negative difference between the size of the "hole" and the "shaft" before 

assembly, when the dimension of the shaft is larger than the dimension of the hole. 

Fit: The relationship resulting from the difference before assembly, between the two sizesof the 

two parts that are to be assembled. 
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[billedtekst start]Figure 1.14: Fits definitions.[billedtekst slut] 

 

Clearance fit: A fit that always provides a clearance between the "hole" and the "shaft" when 

assembled, i.e. the minimum size of the "hole" is either greater than or equal to the 

maximum size of the "shaft". 

Interference fit: A fit that always provides an interference between the "hole" and the "shaft" 

when assembled, i.e. the maximum size of the "hole" is either smaller than or equal to 

the minimum size of the "shaft". 

Transition fit: A fit that may provide either a clearance or an interference. (The tolerance zone 

of the "hole" and the "shaft" overlap.) 

1.4.3 The quality function deployment 

The importance of "choosing" a proper clearance fit for a journal bearing is obvious since in fact 

it incorporates the load carrying capacity of a journal bearing is strongly dependent on the 

minimum oil film thickness h0. For given running conditions (speed, oil viscosity, etc.) it is 

possible to calculate an optimum oil film thickness h0 related to the clearance between the 

journal and the bearing. Because of the manufacturing process, the journal and the bearing must 

be limited with such tolerances that the required load carrying capacity for the bearing will be 

achieved for all bearings with those tolerances. An overall high load carrying capacity for all 

bearings requires fine tolerances. Sometimes it can be reasonable to use the quality function 

deployment concept in the discussion between the design department and the manufacturing 

department. A quality function Q can be defined as the fraction between the achieved function 

and the specified or required function. 

 

In the above example with the journal bearing the quality function can be expressed as a 

function of the clearance in the bearing. See Figure 1.15. 



 

1.4.4 Functional dimensioning 

The functional dimensioning should be expressed directly on the drawing. The application of 

this principle will result in the selection of datum features based on the function of the product. 

The method of locating it is to look into the assembly of which it may form a part. If any datum 

feature other than one based on the function of the product is used, finer tolerances will be 

necessary. Products, which would satisfy the functional requirements may be rejected because 

they exceed these finer tolerances. 



 

Side 13 

 

[billedtekst start]Figure 1.15: Journal bearing.[billedtekst slut] 

 

[billedtekst start]Figure 1.16: Quality function for a specific journal bearing.[billedtekst slut] 

This does not preclude the preparation of special drawings dimensioned from a common datum 

point, to suit particular numerical controlled machining systems, where it is known that the 

overall accuracy of the system to be used will be adequate to ensure the finer tolerance arising 

from dimensioning other than directly from functional datum features, are met. 

A dimension is not complete without a tolerance although the tolerance may not always 

appear with the dimension. 

Functional dimensions shall always be shown with explicitly specified tolerances, 

whereas nonfunctional dimensions may be left without tolerances. In that case information to 

the manufacturer is 
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[billedtekst start]Figure 1.17: Functional dimensioning, f: functional dimension, nf: non-

functional dimension, aux: auxiliary dimension without tolerances (for information 

only).[billedtekst slut] 

to be given elsewhere on the drawing as a reference to standards as ISO 2768-1: General 

tolerances for linear and angular dimensions without individual tolerance indications [7], 

Table 1.2: Permissible variations for linear dimensions. 

Nominal dimensions 0.5 up 

to 3 

Over 3 

up to 6 

Over 6 

up to 30 

Over 30 

up to 120 

Over 120 

up to 315 

Over 315 

up to 1000 

Over 1000 

up to 2000 

Permissible Fine series ±0.05 ±0.05 ±0.1 ±0.15 ±0.2 ±0.3 ±0.5 

variations Medium 

series 

±0.1 ±0.1 ±0.2 ±0.3 ±0.5 ±0.8 ±1.2 

 Coarse 

series 

– ±0.2 ±0.5 ±0.8 ±1.2 ±2 ±3 

Dimensioning a shaft to a gearbox will show the idea of functional dimensioning. The 

shaft is located in axial direction in the gearbox by the two ball bearings. Besides the 

requirement that there shall be full tooth contact all the time it is required that no interference 

during assembly operation or during running conditions occurs. 

An often-used praxis has been to dimension with basis in the ends of the shaft to make it 



 

"easier" for the manufacturing department in the sense that the dimensions directly reflect the 

manufacturing process by giving the dimensions that the lathe tool has to move during cutting. 

The problem by using this method of dimensioning is that the distance of importance for 

the axial clearance is given indirectly. Working with absolute tolerances this (functional 

important) distance can be calculated: 

The maximum is: 212.2 – 97.85 – 17.9 = 96.45 

The minimum is: 211.8 – 98.15 – 18.1 = 95.55 
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[billedtekst start]Figure 1.18: Part of gear assembly drawing.[billedtekst slut] 

The absolute tolerance on this resulting distance is 0.9 mm which is the same as the sum 

of the tolerances for the dimensions of relevance for the distance. (0.4 + 0.3 + 0.2 = 0.9). 

1.4.5 Dimension chains 

 

[billedtekst start]Figure 1.19: Gear shaft with manufacturing related dimensions.[billedtekst 

slut] 

Because of the tolerance stacking problem it is important to dimension with as few 

dimensions in the chain as possible (and feasible). Changing the method of dimensioning the 

shaft for it to include the functional dimension may be advantageous. The dimension chain of 

importance for the axial clearance will be shorter. The tolerances can often be chosen bigger. 

The non-functional dimensions can be given even bigger tolerances resulting in lower 

manufacturing costs. See Figure 1.20. 

Calculation of clearance. 

Related to the gear assembly drawing (Figure 1.18) we have the information of interest in Figure 

1.21 for the calculation of the clearance between the left end cover and the outer ring of the ball 

bearing. 
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[billedtekst start]Figure 1.20: Gear shaft, more functionally dimensioned.[billedtekst slut] 

 

[billedtekst start]Figure 1.21: Dimension chain for the shaft mounted in the gearbox.[billedtekst 

slut] 

First simplifying by looking at the actual dimensions and calculate the actual gab w. 

Consider the dimensions in Figure 1.21 exchanged with actual dimension vectors x1, x2, ... for all 

right tending and y1,y2,y3, ... for all left tending vectors, starting in the upper left corner and 

working clockwise as shown in Figure 1.22. The working direction 8clockwise or 

counterclockwise) is determined from the location of the clearance in the chain. To get the right 

sign on the clearance, it needs to be located on "the way back" to the chain origo. 

 

[billedtekst start]Figure 1.22: Dimensions in chain regarded as vectors.[billedtekst slut] 

The actual clearance can now be calculated to 

w = (x1 +x2 + ...) – (y1 + y2 + y3 + ...) = Σx – Σy (1.13) 

Calculating the worst case max. and min. value of w 
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wmax = Σxmax–Σymax (1.14) 

wmin = Σxmin–Σymin (1.15) 

Back to the gear assembly example the clearance can be calculated to 

wmax = 148.3 – (8.8 + 16.88 + 95.7 + 16.88 + 7.8) = 2.24 (1.16) 

wmin = 147.7 – (9.2 + 17 + 96.3 + 17 + 8.2) = 0 (1.17) 

The above calculations are valid lor an absolute tolerance system. This is one in which no 

instances of the tolerances are outside the range. A worst case calculation presumes that all the 

tolerances in the chain are on their most dangerous limit. That is of course not the case in 

practical life. With a "number of dimensions" in the chain the clearance value will normally be 

concentrated symmetrically around the mean value of w  

1.5 The ISO-tolerance system 

1.5.1 Introduction 

The need for limits and fits for machined work pieces was brought about mainly by the inherent 

inaccuracy of manufacturing methods, coupled with the fact that "exactness" of size was found 

to be unnecessary for most work pieces. In order for the function to be satisfied, it was found 

sufficient to manufacture a given work piece so that its size lay within two permissible limits i.e. 

a tolerance, this being the variation in size acceptable in manufacture. 

Similarly, where a specific fit condition is required between mating work pieces, it is 

necessary to ascribe an allowance either positive or negative to the basic size in order to achieve 

the clearance or interference required, i.e. a "deviation". 

With developments in industry and international trade it became necessary to develop 

formal systems of limits and fits. ISO 286 [8] describes the internationally accepted system of 

limits and fits. 

1.5.2 Field of application 

The ISO system of limits and fits provides a system of tolerances and deviations primary for 

cylindrical work pieces. However, the tolerances and deviations apply to work pieces of other 

than circular section as well. 

The general term "hole" or "shaft" can be taken as referring to the space contained by (or 

containing) the two parallel faces (or tangent planes) of any work piece such as the width of a 

slot or the thickness of a key. 

The system provides fits between mating cylindrical holes and shafts or fits between 

work pieces having features with parallel faces such as the fit between a key and keyway. 



 

1.5.3 Terms and definitions 

The following terms and definitions extend the previously given ones: 

Standard tolerance (IT): Any tolerance belonging to ISO system. The letters of the symbol IT 

stand for "International Tolerance" grade. 
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[billedtekst start]Figure 1.23: Basic size and limits of size.[billedtekst slut] 

Standard tolerance grades: A group of tolerances (e.g. IT7) is considered as corresponding to 

the same level of accuracy for all basic sizes. 

Tolerance zone: In a graphical representation of tolerances -the zone- contained between two 

lines representing the maximum and minimum limits of size. It is defined by the 

magnitude of the tolerance and its position relative to the zero line. 

Tolerance class: The term used for a combination of fundamental deviation and a tolerance 

grade, e.g. h9, D13. 

Standard tolerance factor i and I: A factor which is a function of the basic size, and which is 

used as a basis for the determination of the standard tolerances of the system. The 

standard tolerance factor i is applied to basic sizes less than or equal to 500 mm, whereas 

I is applied to basic sizes greater than 500 mm. 

Fit system: A system of fits comprising shafts and holes belonging to a limit system. 

Shaft-basis system of fits: A system of fits in which the required clearances or interferences are 

obtained by associating holes of various tolerance classes with shafts of a single 

tolerance class. The maximum limit of size of the shaft is identical to the basic size i.e. 

the upper deviation is zero see Figure 1.26. 

Hole-basis system of fits: A system of fits in which the required clearances or interferences are 

obtained by associating shafts of various tolerance classes with holes of a single 

tolerance class. The minimum limit of size of the hole is identical to the basic size, i.e. the 

lower deviation is zero see Figure 1.24. 

Maximum material limit (MML): The designation applied to that of the two limits of size which 

corresponds to the maximum material size for the feature i.e. the upper limit of size for a 

shaft and the lower limit of size for a hole. 

Least material limit (LMU): The designation applied to that of the two limits of size which 

corresponds to the minimum material size for the feature i.e. the lower limit of size for a 

shaft and the upper limit of size for a hole. 
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[billedtekst start]Figure 1.24: Examples of fits.[billedtekst slut] 

1.5.4 Tolerances and deviations 

Basically, the tolerances for holes and shafts can be written as for other functional dimensions, 

as indicated in Figure 1.25. 

In the ISO-tolerance system the same dimension can be written as: 

Ø80G7 

where 

80 = Nominal size. 

G = Information about the tolerance zone deviation. 

In this example given by the lower deviation. 

Generally the deviation closest to the zero-line is used. 

Upper case (capital) letters: holes. 

Lower case (small) letters: shafts. 

7 = A code for the size of the tolerance. (Tolerance grade) 

The tolerance value is a function of the nominal size. 

 

[billedtekst start]Figure 1.25: Example: Hole  Nominal size: 80 Upper deviation: +0.040 

Lower deviation: +0.010 Tolerance: 0.030mm or 30μm[billedtekst slut] 

Standard tolerance grades 

The standard tolerance grades are designated by the letters IT followed by a number, e.g. IT7. 

When the tolerance grade is associated with a letter representing a fundamental deviation to 



 

form a tolerance specification the letters IT are omitted, e.g. h7. 
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Deviations 

The position of the tolerance zone with respect to the zero line, is designated by upper case 

letters for holes (A .. , ZC) or lower case letters for shafts (a . . . zc), see Figure 1.26. 

Designation 

A tolerance class is designated by the letter representing the fundamental deviation (location) 

followed by the number representing the standard tolerance grade. 

Examples: H7 (holes); h7 (shafts) 

A toleranced size shall be designated by the basic size followed by the designation of the 

required tolerance class or the explicit deviations. 

Examples:  

A fit requirement between mating features shall be designated by the common basic size, the 

tolerance class symbol for the hole and the tolerance class symbol for the shaft. 

 

Tolerance tables can be found in Appendix A. 

1.5.5 Preferred numbers 

The French army engineer Col. C. Renard proposed in the late 19th century a set of preferred 

numbers for use with the metric system. 

The system of numbers divides the interval from 1 to 10 into 5, 10, 20, or 40 steps 

respectively. The factor between two consecutive numbers in a Renard series is constant. The 

constant is the 5th., 10th., 20th., or 40th. root of 10. 

The basic equation for the sequences therefore is 

q= 10(j/b), j = 0..n (1.18) 

where j is a integer number between n = 0 and n = b – 1. The integer b is the base number, i.e., b = 

5, b = 10, b = 20 or b = 40. 

The most basic R5 (b = 5) series therefore is 

q5 = 10(j/5), j = 0..4 (1.19) 

if a finer resolution is needed, we use the R10 (b = 10) series 

q10 = 10j/10, j = 0..9 (1.20) 

where an even finer grading is needed, the R20 or R40 series can be applied. The values that 

result from the Renard series need to be rounded in order not to specify a too fine tolerance. The 

rounded values are defined in ISO 3. 

The rounded version of Renard series R5, R10, R20 and R40 are given in Table 1.3 



 

together with the % deviation of the Renard value to the ISO value. 
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[billedtekst start]Figure 1.26: Position of tolerance zones.[billedtekst slut] 

1.5.6 Standard tolerance grades IT1 to IT16 

The values for standard tolerances ITl to IT16 for basic sizes up to 500mm are determined as a 

function of the standard tolerance factor i. The standard tolerance factor i in [μm] is calculated 

from (1.21) 

 

where D is the geometric mean of the basic size step in [mm]. If the extreme values of a step is 

D1 and D2 then the geometric mean is defined as 
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Table 1.3: Preferred numbers from ISO 3. The R5, R10, R20 and R40 series. 

R5 R10 R20 R40 % deviation from (1.18) 

1.00 1.00 1.00 1.00 0 

- - - 1.06 +0.07 

- - 1.12 1.12 -0.18 

- - - 1.18 -0.71 

- 1.25 1.25 1.25 -0.71 

- - - 1.32 -1.01 

- - 1.40 1.40 -0.88 

- - - 1.50 +0.25 

1.60 1.60 1.60 1.60 +0.95 

- - - 1.70 +1.26 

- - 1.80 1.80 + 1.22 

- - - 1.90 +0.87 

- 2.00 2.00 2.00 +0.24 

- - - 2.12 +0.31 

- - 2.24 2.24 +0.06 

- - - 2.36 -0.48 

2.50 2.50 2.50 2.50 -0.47 

- - - 2.65 -0.40 

- - 2.80 2.80 -0.65 

- - - 3.00 +0.49 

- 3.15 3.15 3.15 -0.39 



 

- - - 3.35 +0.01 

- - 3.55 3.55 +0.05 

- - - 3.75 -0.22 

4.00 4.00 4.00 4.00 +0.47 

- - - 4.25 +0.78 

- - 4.50 4.50 +0.74 

- - - 4.75 +0.39 

- 5.00 5.00 5.00 -0.24 

- - - 5.30 -0.17 

- - 5.60 5.60 -0.42 

- - - 6.00 +0.73 

6.30 6.30 6.30 6.30 -0.15 

- - - 6.70 +0.25 

- - 7.10 7.10 +0.29 

- - - 7.50 +0.01 

- 8.00 8.00 8.00 +0.71 

- - - 8.50 +1.02 

- - 9.00 9.00 +0.98 

- - - 9.50 +0.63 

10.0 10.0 10.0 10.0 0 

 

1.5.7 Formula for standard tolerances in grades IT5 to IT16 

The size of the standard tolerance grades follow the numbers given in Table 1.4. It can be seen 

that the numbers follows the R5 series although the value 6.3 for some reason have been 



 

interchanged with either the value 7.0 or the value 6.4. 

Example 
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Table 1.4: Formula for standard tolerances. 

 IT 5 IT 6 IT 7 IT 8 IT 9 IT 10 IT 11 IT 12 IT 13 IT 14 IT 15 IT 16 

Value 7 i 10i 16i 25i 40i 64i 100i 160i 250i 400i 640i 1000i 

Calculate the standard tolerance IT7 for the diameter range D ∊]50mm: 80mm] . 

 

IT750–80 = 16i = 29.7μm rounded up to 30μm compare with Table A. 1 in Appendix A. 

1.6 Nomenclature 

aux mm Auxiliary dimension 

b – Base number 

i jum Standard tolerance value 

f mm Functional dimension 

nf mm Non functional dimension 

q – A prefered number 

w mm Gab (clearance) 

x1, x2, ... mm Dimensions 

y1,y2,... mm Dimensions 

D mm Geometric mean 

Q – Quality function (number) 

Ra μm Surface roughness (Arithmetic mean) 

Rk μm Surface roughness parameter 

Rpk μm Surface roughness parameter 

Rq μm Surface roughness parameter 



 

Rt μm Surface roughness parameter 

Rvk μm Surface roughness parameter 

Rz μm Surface roughness parameter 
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Chapter 2 Springs 

2.1 Introduction 

The purpose of using springs can fall into a wide range between the two following extremities: 

1. As accumulators for energy. An example is the balancing spring in the hood of 

an automobile or the balancing spring in a watch. In both cases the energy loss 

are to be minimized. 

2. As energy absorbers. An example is the buffer springs between goods wagons. 

The springs are in this case designed to absorb most of the energy caused by the 

collision when shunting and when released transform most of the energy into 

friction heat. 

But for normal springs (at least metal springs) the characteristic functionality will be 

closest to the first extremity. 

In the design situation for a suitable spring the starting point will normally be the 

working diagram for the spring. 

 

[billedtekst start]Figure 2.1: Working diagram for a spring. Shown are both a linear and two 

nonlinear spring characteristics.[billedtekst slut] 

2.2 The design situation 

Often the goal is to design a spring with the lowest possible weight which are able to fit 

properly into the actual application. This is of course of special interest when designing springs 

for vehicles as automobiles 
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and airplanes. In other cases the design criteria is of a more complex nature as the spring 

examples in Figure 2.2 could indicate. 

 

[billedtekst start]Figure 2.2: A variety of spring elements.[billedtekst slut] 

User specific parameters will normally be related to the spring rate. As is seen from 

Figures 2.3 and 2.4, relations between the parameters can be shown graphically. The following 

expressions can be set up. 

2.3 Helical springs 

The spring rate/stiffness is given as 

 

For the helical spring it can be assumed that the spring rate is constant. From this 

follows that 

F = Ks (2.2) 

under the assumption that the displacement s is measured relative to the unloaded state, i.e., 

where F = 0. The rate can in this case be given as 

 

where sh is a working deflection, see Figure 2.3. The work done by spring deformation is given 

as 

 

In this case with a constant spring rate this simplifies to 
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[billedtekst.start]Figure 2.3:Spring diagram for compression spring.[billedtekst slut] 

It is normally not all the parameters that are of interest for the designer. Often it is only 

F1 F2 and sh. There may be requirements to the geometric data of a spring, so that for example its 

diameter is inside certain limits. Typically, specifications are given for De, Di, L0, L1, L2, Lc and sa. 

Lc and sa are of course only specified for compression springs. Extension springs will very often 

be manufactured with initial tension. This means that the spring will not deflect until this initial 

tension is overcome. Hot-formed springs cannot be manufactured with initial tension. 

Often the user will set up requirements for the tolerance of the spring. The tolerance 

may be specified for as well geometrical data as for spring force and the spring rate. Statically 

loaded springs will be designed to a certain maximum relaxation. 

Additionally, requirements can be set up for the natural frequency, ability to absorb 

shock loads, corrosion resistance, electrical conductivity, operational temperature etc. 

2.3.1 Formulas for helical springs 

When a helical spring is loaded with an external load F it will deflect a distance s, see Figure 2.1. 

The associated external work is 

 

As the helical spring deflects the wire will be twisted an angle α due to the torsional 

moment T, where α is measured at the total length of the wire. The wire twisting can be seen as 



 

the internal work in the wire 
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[billedtekst.start]]Figure 2.4: Spring diagram for extension spring.[billedteskst.slut] 

 

giving 

 

When a prismatic beam is loaded by a torsional moment T the shear angle (shear strain) 

becomes 

 

where 

 

Finally, the relation between twist angle α and the shear angle γ is 

 

Combining (2.6) to (2.11) the fundamental formulas for springs may be derived Load on 

spring 

 

Spring deflection 

 

Spring rate 
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Shear stress 

 

Wire diameter 

 

Active coils 

 

2.3.2 Stress curvature correction factor 

 

[billedtekst.start]Figure 2.5: Stress curvature correction factor as a function of the spring 

index.[billedteskst.slut] 

The stresses in a spring are unevenly distributed in the wire cross section. The stress is 

greater on the inside of the coil than on the outside. The curvature correction factor c takes this 

effect into account. The stress curvature correction factor depends on the spring index  
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2.3.3 Material properties 

Material properties for springs may be found in numerous places. Standards classifies the 

materials into groups, see [3], [4], [5], [6] and [7]. Material vendors normally distribute updated 

material data on request. 

Table 2.1: Examples of commonly used materials for springs. 

Material E G ρ 

- N/mm2 N/mm2 kg/m3 

Cold drawn unalloyed steel spring wire, DIN 17223 part 1 206000 81500 7850 

/EN10270-1 

Oil quenched and tempered spring steel wire of unalloyed and 

alloyed steels, DIN 17223 part 2 /EN10270-2 

206000 79500 7850 

Hot rolled steels for quenched and tempered springs, DIN 17221 206000 78500 7850 

Stainless steel after DIN 17224/EN10088: X 12 CrNi 17 7 185000 70000 7900 

X 7 CrNiAl 17 7 195000 73000 7900 

X 5 CrNiMo 18 10 180000 68000 7900 

Tin-bronze CuSn6 F95 after DIN 17682/EN1654 hard-drawn 115000 42000 8730 

Cobber-Zinc-Alloy CuZn36 F70 after DIN 17682 hard-drawn 110000 39000 8400 

Cobber-Beryllium-Alloy CuBe2 after DIN 17682 120000 47000 8800 

Cobber-Cobolt-Beryllium-Alloy CuCoBe after DIN 17682 130000 48000 8800 

2.3.4 Relaxation 

The relaxation of a spring depends on time, temperature, material and internal tension. There 

are no formulas for this, therefore, the relaxation must be found from experimental work. From 

[9] an example is given in Figure 2.6. When the temperature is raised the parameters of the 

spring changes, especially the shear modulus. 



 

2.3.5 Types of load 

DIN 2089, part 1 [8] separate the loads in three categories. 

Static load: This is a load situation, where the load is constant over a longer period of time or 

where the number of load cycles is less than 104 in the lifetime of the spring. 

Quasi-static load: In this load situation the load varies with time, but the variation is less than 

10% of the design torsional stress with static load. 

Dynamic load: This concerns load situations where the number of load cycles exceeds 104 over 

the springs lifetime and the stress variation exceeds 10% of the design stress level for static load. 
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[billedtekst.start]Figure 2.6: Relaxation after 48 hours of cold-formed compression springs 

made of wire type C (see [4] for details).[billedteskst.slut] 

2.3.6 Dynamic loading 

A spring is considered as dynamically loaded if the number of load cycles exceeds 104 during 

the lifetime of the spring. If the spring is loaded dynamically the stress level should be reduced 

to minimize the risk of fatigue failure. 

The dynamic load is characterized by the following parameters: 

The mean value of the load 

 

and the amplitude of the load 

 

The shear stresses corresponding to these load parameters can be expressed as 

 

and 

 

Generally only compression springs should be used for dynamic loads, since the 

maximum actual stress in extension springs is very sensitive to the layout of the eyes. An 

example of material maximum values of shear stress is given by the specific modified Goodman 

diagram in Figure 2.7. For specific materials limits see e.g. [8]. More details about the Goodman 

diagram is given in Chapter 4. 
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[billedtekst.start]Figure 2.7: Specific modified Goodman diagram (for the case where τm > τa) 

for spring wire shear strength for 106 load cycles, the graph is modified relative to the original 

one found in [8] and is for wire type C and D (see [8] for details). The load point (τm, τa) should 

be below the full line for the specific wire diameter to withstand 106 load 

cycles.[billedteskst.slut] 

2.3.7 Optimization 

If a number of springs made in the same material are all able to fulfill the requirements set up 

by the designer, he will often choose the one with the smallest mass, since this normally will be 

the cheapest one. 

The mass of a spring is proportional to the volume of the wire and can be expressed by 

 

the work done by the spring deformation can be expressed as 

 

where 

 

and 

 

and 

 

For a given amount of work the shear stress r must be maximized to minimize the 

volume. The most optimal spring is therefore the one with the highest shear stress level. 

The required spring diameter for a given maximum load F2 can be found 
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where F2 is the force determining the springs dimensions. All springs with a specified τall will be 

equally well suited with regard to work. 

The following expressions can be used to guide the search for an optimum spring 

 

To achieve the smallest possible volume of wire, the mean diameter should be as large 

as possible for constant s. 

The optimization process should first find the smallest acceptable wire diameter within 

the solution domain. As the maximum allowable torsional stress is known, the corresponding 

mean diameter of the coil can be found. 

The mean diameter can be found from: 

 

If the mean diameter D found is inside the limits of the solution domain, the calculation 

may continue with a check of the other boundary conditions. 

If the mean diameter found is greater than the maximum allowable Dmax, D should be 

put equal to Dmax. 

If the calculated mean diameter is smaller than the minimum acceptable mean diameter, 

the wire diameter should be rejected. 

The spring index is expressed as 

 

If the calculated spring index is inside the solution domain, the calculation may proceed 

with check of other boundary conditions. 

If the calculated spring index is larger than accepted in the solution domain, then 

D = dω (2.35) 

If the calculated spring index is smaller than the smallest acceptable in the solution 

domain, the wire is rejected and the calculation starts over again with a larger wire diameter. 

The maximum deflection of one coil is found from 

 



 

Now, the necessary number of coils can be found 

 

If the necessary number of coils is inside the specified limits, the unloaded spring length 

L0 is found. In case of compression springs the maximum workload F2 should not correspond to 

a solid compressed spring, since the spring rate is not linear at this deflection. 
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The maximum deflection until solid length is 

sc=s2+sa (2.38) 

The stress in the spring at solid length is: 

 

This stress level should be lower than the maximum allowable stress level in the spring. 

If this is not the case the mean diameter of the spring is reduced and the number of coils is 

increased, which gives a smaller deflection in each coil and thereby a lower stress level. 

Dynamically loaded springs must be checked in the Goodman diagram (see Chapter 4). 

This is done by calculating the stress at F1 and the amplitude stress for F2 – F1. 

2.3.8 Compression springs 

Figure 2.3 shows the spring diagram for a compression spring. Two phenomena are of special 

interest for compression springs. One is the growing spring diameter when the spring is 

compressed and the other the natural frequency of the spring. 

2.3.9 Growing mean diameter of helix 

When a compression spring is loaded so that the coils approach each other, the diameter of the 

helix increases. The increase can be expressed as 

 

where m = (L0 – d)/n for springs with closed and ground ends, and m = (L0 – 2.5d)/n for springs 

with plain ends. 

2.3.10 Natural frequency 

Springs used in machinery with high speeds can be exposed to resonance phenomena. If a 

spring is clamped in both ends the natural frequency is 

 

2.3.11 Buckling of spring 

It is important to ensure that the spring height is limited for the buckling or column action to be 

avoided. If the spring buckles the length corresponding to the buckling load it is called Lb and 

the corresponding compression of the spring is called sb. The buckling load for a spring depends 

upon the boundary conditions. In Figure 2.8 different types of boundary conditions are 

specified. Corresponding to these boundaries is a factor that influences the following expression 



 

 

Buckling is avoided if 
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The buckling limit can also be seen on Figure 2.9. 

 

[billedtekst.start]Figure 2.8: Different types of boundaries for springs .[billedteskst.slut] 

 

[billedtekst.start]Figure 2.9: Theoretical buckling limit for helical compression spring 

(Poisson's ratio is assumed to be v =0.3).[billedteskst.slut] 
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2.3.12 Statically loaded cold-formed compression spring 

The following conditions should be fulfilled 

d < 7mm, D < 200mm, L0 < 630mm, n > 2 and 4 < ω < 20 

All compression springs must be designed so they can be compressed until solid length, 

without this leading to overload. 

The highest allowable torsional stress is τall < 0.56τu, where τu is the lowest ultimate 

stress level for the material. In addition the following formulas apply: 

nt = n + 2 (2.44) 

 

with ends ground the solid length is 

Lsl = ntd (2.46) 

with plain ends 

Lsl = (nt + 1.5 )d (2.47) 

2.3.13 Statically loaded hot-formed compression spring 

The following conditions should be fulfilled: 

8mm < d < 60mm, De < 460mm, L0 < 800mm, n > 3 and 3 < ω < 12 

All compression springs must be designed so they can be compressed until solid length 

without this leading to overload. The maximum allowable stress when compressed to solid 

length can be seen from DIN 2089, part 1 [8]. In addition the following formulas apply 

nt = n + 1.5 (2.48) 

sa = 0.02 (D + d)n (2.49) 

with ends ground the solid length is 

Lsl = (nt - 0.3)d (2.50) 

with plain ends 

Lsl = (nt + 1.1)d (2.51) 
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2.3.14 Dynamically loaded cold-formed compression spring 

The same geometrical limitations as for a statically loaded springs apply for the dynamically 

loaded spring. In addition there are some requirements concerning fatigue load. 

The calculated τe must not exceed the value given in Goodman diagram. When 

calculating the lower and upper shear stress amplitude values, τel and τeu, the stress curvature 

correction factor c, see Figure 2.5, must be taken into account. 

τel = cτ1 (2.52) 

τeu = cτ2 (2.53) 

τa = τeu – τel = c(τ2 – τ1) (2.54) 

Goodman diagrams for a number of materials are given in DIN 2089, part 1 [81. It 

should be remembered that these values are only representative if the spring is not exposed to 

corrosion or frictional wear. All dynamically loaded springs should be shot peened. 

In addition the following relations apply 

nt = n + 2 (2.55) 

Lsl = ntd (2.56) 

 

2.3.15 Dynamically loaded hot-formed compression spring 

The same limitations as for cold-formed statically loaded compression springs apply. In 

addition the following special relations apply 

nt = n + 1.5 (2.58) 

Lsl = (nt – 0.3)d (2.59) 

sa = 0.02(D + d)n · 2 (2.60) 

As described in Subsection 2.3.2 the stresses should be modified with c. 

2.3.16 Extension springs 

For extension springs the specification is defined according to Figure 2.4. 
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2.3.17 Initial tension 

Most cold-formed extension springs are produced with initial tension. The spring can, however, 

be calculated as if it were not. Afterwards the influence of the initial tension can be taken into 

account as described in DIN 2089, part 2 [9]. The stress level depends on the spring index ω. 

Since stresses are only given for ω = 4 and ω = 12 linear interpolation may be used to find 

intermediate values. 

2.3.18 Statically loaded cold-formed extension springs 

The springs must fulfill the following conditions: 

d < 17mm, D < 160mm, L0 < 1500mm, n > 3 and 4 < ω < 20 

At the largest possible spring deflection the highest allowable torsional stress is τall < 0.45τu, 

where τu is the minimal ultimate stress for the material. 

The following special relations apply 

nt = n (2.61) 

Lsl = (nt + l)d (2.62) 

L0 = Lsl + 2Le (2.63) 

2.3.19 Statically loaded hot-formed extension springs 

The following geometrical limitations apply 

10mm < d < 60mm, De < 460mm, L0 < 1500mm, n > .3 and 3 < ω < 12 

nt = n (2.64) 

Lsl = (nt + 1 )d (2.65) 

L0 = Lsl + 2Le (2.66) 

2.3.20 Dynamically loaded cold-formed extension springs 

The following geometrical limitations apply 

d < 17mm, D < 160mm, L0 < 1500mm, n > 3 and 4 < ω < 20 

nt = n (2.67) 
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Lsl = (nt + 1 )d (2.68) 

L0 = Lsl + 2Le (2.69) 

Extension springs are normally not suited for dynamic loading. This is caused by the 

normal production methods for the spring ends. By bending the hook, a sharp edge is "added" 

to the bending zone that causes stress concentration. 

2.3.21 Dynamically loaded hot-formed extension springs 

There are no specifications for this type of springs in the standards, since they should be 

avoided wherever possible. 

2.3.22 Ends of extension springs 

A number of different ends can be chosen when an extension spring is specified, see examples 

in Figure 2.10. 

 

[billedtekst.start]Figure 2.10: Different types of ends.[billedteskst.slut] 

The ends have the following names: 
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a Machine half loop 

b Full twisted loop 

c Double twisted loop 

d Side loop 

e Raised hook 

f Side hook 

g English loop 

h Conical spring end with loop 

The most common of these ends is the full twisted loop (b). Additionally, it is the 

cheapest one and at the same time relatively strong. The weakest point in an extension spring is 

in the end and generally it is recommended that the load should be at least 20% lower than in a 

compression spring. 

2.4 Belleville springs or coned-disk springs 

Belleville springs are made from circular disks that have been squeezed to a conical shape. 

The major advantage of Belleville springs is that it is possible to obtain very high spring 

rates and forces in limited space. 

 

[billedtekst.start]Figure 2.11: Belleville springs.[billedteskst.slut] 

 

[billedtekst.start]Figure 2.12: Geometry data and location of critical stresses in Belleville 

springs.[billedteskst.slut] 

2.4.1 Formulas for Belleville springs 

The fundamental formulas for Belleville springs originate from rather complicated analysis. 



 

Belleville springs have according to the standard [10] two standard designs; one without contact 

areas as see in Figure 2.12, and one with contact areas. 
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The flattening force (the force required to flatten the spring completely) is 

 

Introducing the material constant cm 

 

Force-deflection relationship 

 

 

[billedtekst.start]Figure 2.13: Deflection-force diagram for Belleville springs.[billedteskst.slut] 

Spring rate 

 

Work done by spring deflection 

 

The stress at the point defined in Figure 2.12 are 
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where δ = De/Di is the diameter ratio for the spring. Positive stress is tensile stress and negative 

stress is compressive stress. The defined parameters C1 to C5 depend on δ. For the standard 

spring design, in Figure 2.12, we can use C4 = 1 and estimate the remaining parameters from 

Table 2.2. Alternatively one may use 

 

For a spring with contact areas C4 depends on the design see [10] for specific value. 

2.5 Helical torsion springs 

2.5.1 Methods of loading 

Helical torsion springs have essentially the same shape as helical compression or tension 

springs except that the ends are formed in such a way that the spring may be loaded by a torque 

about the coil axis. Because of the mode of stressing of such springs, the primary stress is 

flexural in contrast to the helical compression or tension spring where the primary stress is 

torsional. 

Torsion springs are made with a variety of shapes. The design of the spring end is made 

primarily for the purpose of transmitting external torque to the spring. Such springs are used in 

a wide variety of applications. A typical method of loading a torsion spring is indicated in 

Figure 2.14. 

The spring is supposed to be wound around a rod, one end of it being fastened to the 

rod while the other end has a straight portion projecting radially. If the spring is loaded by a 

force F at a radius r from the axis to wind the spring the moment tending to twist the spring will 

be Fr, as indicated in the figure. Because of friction between the spring and guiding rod, the 



 

actual moment will decrease along making it difficult to predict the spring rate. 

Since most torsion springs are formed cold, it is advisable to load them in such a way 

that the spring tends to wind up as the load is applied. The reason for this is that the residual 

stresses set up as a consequence of the cold winding are in such a direction as to subtract from 

the peak stress due 
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Table 2.2: Parameters for Belleville springs. 

δ Cl C2 C3 C5 

1.2 0.29 1.02 1.05 1.08 

1.4 0.46 1.07 1.14 1.20 

1.6 0.57 1.12 1.22 1.31 

1.8 0.65 1.17 1.30 1.43 

2.0 0.69 1.22 1.38 1.54 

2.2 0.73 1.26 1.45 1.64 

2.4 0.75 1.31 1.53 1.75 

2.6 0.77 1.35 1.60 1.85 

2.8 0.78 1.39 1.67 1.95 

3.0 0.79 1.43 1.74 2.05 

3.2 0.79 1.46 1.81 2.15 

3.4 0.80 1.50 1.87 2.25 

3.6 0.80 1.54 1.94 2.34 

3.8 0.80 1.57 2.00 2.44 

4.0 0.80 1.60 2.07 2.53 

4.2 0.80 1.64 2.13 2.62 

4.4 0.80 1.67 2.19 2.71 

4.6 0.80 1.70 2.25 2.80 

4.8 0.79 1.73 2.31 2.89 

5.0 0.79 1.76 2.37 2.98 



 

 

[billedtekst.start]Figure 2.14: Helical torsion spring.[billedteskst.slut] 

to the loading, provided that the load is in the same direction as that in which the spring was 

wound. If the direction of loading is such as to unwind the spring, it is advisable to heat-treat by 

means of a stress-relieving treatment in order to remove residual stresses. 

2.5.2 Binding effects 

Because a torsion spring (for usual applications) tends to wind up with load, its diameter 

decreases. If the spring is operated around a rod, it is important that sufficient clearance is being 

allowed between the rod diameter and the inner diameter of the spring. If this is not done, the 

spring may bind or wrap around the rod and high stresses may be set up. The clearance 

necessary may be estimated from the calculated deflection of the ends of the spring that will 

depend on the end design as seen in Subsection 2.3.22. Thus, if the spring end deflects 90° or 

one-quarter of a turn and the spring has eight turns, the diameter will 
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change about 3%. This can be allowed for in design. If the spring fits inside a tube and loaded to 

unwind sufficient clearance must be allowed between the outside diameter of the spring and 

the inside diameter of the tube. 

2.5.3 Formulas for helical torsion springs 

The fundamental formulas derived from basic physics are presented below. 

Bending moment load and spring torsional moment 

M = Fr (2.85) 

Bending stress in wire 

 

where the stress curvature correction factor ct depends on the spring index (2.34) and is given as 

 

Spring deflection angle 

 

Torsional spring rate 

 

Length of wire in the spring 

l = Dπn (2.90) 

The deflection work for a helical torsion spring is given by 

 

using from (2.88) that M = αEI/l in (2.91) gives 

 

and finally the work is given by 
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[billedtekst.start]Figure 2.15: Spiral springs. (a) Clamped outer end. (b) Simply supported outer 

end.[billedteskst.slut] 

2.6 Spiral springs 

Spiral springs (Figure 2.15) are flat moment springs that are used in many different 

applications, e.g. watches or as the rewinding mechanism for the starter cord of small engines 

(lawnmower engines). The cross section of the spring wire is in most cases rectangular. 

In this section we will derive the spring stiffness for spiral springs. The derivation is 

based on a number of assumptions, these are 

• The number of turns is large. 

• The thickness h of the wire relative to the radius r allows the theory for straight 

beams to be used, i.e. h/r < 1/2. 

• There is no contact between the turns. 

• Deformation only due to bending moment. 

With the assumption that there is no contact between the turns, we may express a spring 

in the shape of a spiral as an Archimedes spiral given as 

x = αθcos(θ) (2.94) 

y = αθ sin(θ) (2.95) 

where a is the distance between the turns and the angle lies between two endpoints θ1 ≦ θ ≧ θ2. 

The derivation separates into two cases; one where the outer end is clamped and the 

second where the outer end is simply supported. 

2.6.1 Clamped outer end 

The inner part of the spiral spring is assumed to be attached to the center by an infinitely stiff 

beam. With the outer end clamped the structure is two times statically indeterminate and we 

must add two redundant generalized forces. The chosen redundant forces Fx and Fy are 

illustrated in Figure 2.16(a) together with the external applied moment M0. 



 

The bending moment is given by 
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[billedtekst.start]Figure 2.16: (a) Clamped spiral spring with external applied moment M0 and 

redundant forces Fx and Fy. (b) Spiral spring cut at a specific point indicating the internal forces 

Fr, Ft and the bending moment M.[billedteskst.slut] 

M = M0 + Fy x – Fx y (2.96) 

With the assumption that the height h of the wire relative to the radius r in the spiral spring 

fulfills that h/r < 1/2 we can express the complementary elastic energy due to the bending 

moment in the spring as 

 

where ℓ is the length of the spring, E modulus of elasticity and I moment of inertia of cross 

section. 

From Castigliano’s 2nd theorem we know that we may find the displacement by 

differentiating the energy with respect to the corresponding load. The two displacements due to 

the two redundant forces must be zero and therefore we find that 

 

By using (2.96) in (2.98) and (2.99) we find that 

 

Under the assumption that there are many turns we may show that the following equations are 

fulfilled 
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From these equations follow directly that 

Fx≈ 0 Fy≈0 (2.103) 

We now find the angle of rotation θ0 corresponding to the external load M0 by applying 

Castigliano’s 2nd theorem again. We find 

 

From this equation we directly have the stiffness of a spiral spring that is clamped at the outer 

end 

 

The maximum stress in the spring is found directly from the moment and is given by 

 

2.6.2 Simply supported outer end 

With the assumption of many turns we can also specify that θ2 = 2πn where n is an integer 

number. The inner part of the spiral spring is assumed to be attached to the center by a 

infinitely stiff beam. With the outer end simply supported, the structure is one time statically 

indeterminate and we must add one redundant generalized force. In Figure 2.17(a) we show the 

chosen redundant forces Fx together with the external applied moment M0 and the reaction 

force Ry. 

Using that the moment is zero at the outer end we may express Ry as a function of M0 as 

shown on Figure 2.17(b). The bending moment is then given by 

 

We apply Castigliano’s 2nd theorem to find Fx under the assumption that the corresponding 

displacement is zero. 

 

By using (2.107) in (2.108) we find that 

 

Using (2.102) we find that 
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[billedtekst.start]Figure 2.17: (a) Simply supported spiral spring with redundant force Fx,the 

external applied moment M0 and the reaction force Ry. (b) Spiral spring cut at a specific point 

indicating the internal forces which includes the bending moment M.[billedteskst.slut] 

 

Fx ≈ 0 (2.110) 

We now find the angle of rotation θ0 corresponding to the external load M0 by applying 

Castigliano’s 2nd theorem again. We find 

 

The last approximation in (2.111) is due to the use of (2.102). Finally, we may for a large number 

of turns show that 

 

The rotation θ0 is therefore given by 

 

From this equation we directly find the stiffness of the spiral spring that is simply supported at 

the outer end 

 

The maximum stress in the spring is found directly from the maximum value of the moment, 

which in the case of many turns becomes Mmax ≈ 2M0. 
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We notice that the maximum stress for the case of a simply supported outer end is twice the size 

of the maximum stress for the case of a clamped outer end. 

2.7 Supplementary literature 

Springs are treated in most machine element textbooks and the following books are 

recommended for further reading [14], [9] and [1], 

2.8 Nomenclature 

c – Stress curvature correction factor 

cm N/mm2 Material constant 

ct – Stress curvature correction factor 

d mm Wire diameter 

f rad/s Natural frequency 

h0 mm Strike height of Belleville spring 

t mm Thickness of Belleville spring 

l mm Length of wire 

l mm Length of spring 

n – Number of active coils 

nt – Total number of coils 

s mm Deflection of spring 

s mm Curve coordinate 

s1, s2, s3 mm Deflection of spring corresponding to loads F1, F2 and F3 

s1c mm Deflection of one coil 

sa mm Sum of minimum distances between coils 



 

sb mm Deflection of spring corresponding to buckling load 

sh mm Working deflection 

sn mm Deflection corresponding to the smallest allowable spring length 

sc mm Deflection to solid length 

t mm Thickness of Belleville spring 

v – Buckling sensitivity factor 

w – Spring index 

x mm Position 

y mm Position 

C1,C2,C3,C4,C5 – Constants for Belleville springs 

D mm Mean diameter of helix 

De mm External diameter of helix 

De mm External diameter of Belleville spring 

Di mm Internal diameter of helix 

Di mm Internal diameter of Belleville spring 

Dmax mm Maximum value of mean diameter of helix 

E N/mm2 Modulus of elasticity 

F N Load on spring 
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F1 N Minimum working load 

F2 N Maximum working load 

Fa,d N Load amplitude for dynamic loaded spring 

Fb N Buckling load 

Fc N Flattening force for Belleville spring 

Fmax N Maximum allowable load 

Fmax,d N Maximum load for dynamic loaded spring 

Fmin,d N Minimum load for dynamic loaded spring 

Fm.d N Mean load for dynamic loaded spring 

Fn N Load corresponding to the smallest allowable spring length 

G N/mm2 Shear modulus 

I mm4 Cross sectional moment of inertia 

Ip mm4 Cross sectional polar moment of inertia 

K N/mm Spring rate/stiffness 

Kc Nmm Stiffness of clamped spiral spring 

Ks Nmm Stiffness of simply supported spiral spring 

Kt Nmm Torsional spring rate/stiffness 

L0 mm Length of spring unloaded 

L1 mm Length of spring when loaded with F1 

L2 mm Length of spring when loaded with F2 

Lb mm Buckling length 

Le mm Length of end on an extension spring 



 

Ln mm Test length of spring 

Lsl mm Solid length of spring (when coils touch each other) 

M Nmm Bending moment 

sd mm Standard deviation of wire diameter 

SD mm Standard deviation of spring diameter 

SFmax N Standard deviation of spring strength 

Sτall N/mm2 Standard deviation of spring shear strength 

T Nmm Torsional moment 

uc Nmm Complementary elastic energy 

Vw mm3 Volume of the wire in a spring 

W Nm Work done by spring deformation 

Wb mm3 Bending resistance 

wp mm3 Torsional resistance 

α rad Angle of deflection 

γ – Shear strain (angle for torsionally loaded wire) 

δ – Diameter ratio for Belleville springs 

ρ kg/m3 Density of spring material 

σ N/mm2 Normal stress 

τu N/mm2 Ultimate stress 

τa N/mm2 Amplitude of shear stress 

τall N/mm2 Allowable shear stress 

τe N/mm2 Endurance limit in shear 

τel N/mm2 Endurance limit in shear, lower value in Goodman-diagram 



 

τeu N/mm2 Endurance limit in shear, upper value in Goodman-diagram 

τm N/mm2 Mean shear stress 

τctheo N/mm2 Shearing-stress is a spring compressed solid 

V – Poisson ratio 
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Chapter 3 Rolling element bearings 

3.1 Introduction 

Rolling element bearings are very important standard elements in modern machinery. They are 

manufactured in an incomprehensible large number and are therefore relatively cheap and of a 

very high and uniform quality. 

The fundamental bearing theory used to analyze rolling element bearings is called 

"Elastohydrodynamic Lubrication" and this may be found in advanced textbooks on lubrication 

theory. See for example [4]. 

The typical situation for the engineering designer is that he has to select or find an 

appropriate bearing for his machinery. This chapter will focus on the selection procedure and 

the associated required information. 

Rolling element bearing geometry is ISO-standardized, whereas the bearing selection 

procedure is different from manufacturer to manufacturer. 

The content of this chapter is in broad outline based on the selection procedure from the 

manufacturer SKF. In the "SKF General Catalogue" (the catalogue with the bearings 

manufactured by the SKF Company) the selection procedure and other facts are described in 

detail. Further it is possible to obtain much more information from the SKF Company WEB-site. 

3.2 Bearing types 

Each type of bearing displays characteristic properties that depend on its design. For example, 

deep groove ball bearings can accommodate radial loads as well as axial loads. 

Spherical roller bearings can carry heavier loads and are self-aligning. These properties 

make them attractive in heavy machinery. 

Several application factors have to be considered and weighed against each other when 

selecting bearing type. These include load carrying capacity and life, friction, permissible 

speeds, bearing internal clearance or preload, lubrication and sealing. 

3.2.1 Available space 

For small diameter shafts all types of ball bearings can be used, the most popular being deep 

groove ball bearings, see Figure 3.1. Needle roller bearings are also suitable. For large diameter 

shafts, cylindrical, spherical and taper roller bearings are available as well as deep groove ball 

bearings, see Figures 3.1 to 3.9. 

When radial space is limited bearings with a small cross section, particularly those with 

a low cross- sectional height should be chosen. Needle roller bearings without (or with) inner 

ring are very appropriate 
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[billedtekst.start]Figure 3.1: A deep groove ball bearing (6210) with and without 

seals.[billedteskst.slut] 

 

[billedtekst.start]Figure 3.2: Size comparison of deep groove ball bearings with the same bore 

diameter. From left to right: 61810, 61910, 6010, 6210, 6310 and 6410.[billedteskst.slut] 

as are certain series of deep groove and angular contact ball bearings, cylindrical and spherical 

roller bearings. 

When space is limited in the axial direction, certain series of single row cylindrical roller 

bearings and deep groove ball bearings can be used for radial and combined loads as well as the 

various types of combined needle roller bearings. 

For purely axial loads, needle roller and cage thrust assemblies (with or without 

washers) as well as certain series of thrust ball bearings and cylindrical roller thrust bearings 

can be used. In many cases, one of the principal dimensions of the bearing, generally the bore 

diameter, is predetermined by the machine design. 

3.2.2 Loads 

The magnitude of the load is the factor that usually determines the size of bearing used. 

Generally, roller bearings are able to support heavier loads than ball bearings having the 

same overall dimensions and bearings having a full complement of rolling elements can carry 

heavier loads than the corresponding caged bearings. Ball bearings are mostly used where loads 

are light or moderate. For heavy loads and where shaft diameters are large, roller bearings are 

usually more appropriate. 

Purely radial loads can be supported by cylindrical roller bearings having one ring 

without flanges (NU and N types), radial needle roller bearings and CARB bearings. All other 

radial bearings can carry some axial load in addition to radial loads. 

Thrust bearings can be grouped as single direction bearings and double direction 



 

bearings respectively. Single direction thrust ball bearings can only accommodate loads acting 

in one direction. For loads acting in both directions, double direction bearings are needed. 

Thrust ball bearings and four-point contact ball bearings are the most suitable types for light or 

moderate loads that are purely axial. 
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Angular contact thrust ball bearings can support moderate axial loads at high speeds, 

see Figure 3.3. The single direction bearings can also accommodate simultaneously acting radial 

loads, whilst the double direction bearings are normally used only for purely axial loads. 

 

[billedtekst.start]Figure 3.3: Two angular contact ball bearings (7212 and 

7312).[billedteskst.slut] 

 

[billedtekst.start]Figure 3.4: Pairs of angular contact ball bearings. To the left: back-to-back 

arrangement. To the right: face-to-face arrangement.[billedteskst.slut] 

For moderate and heavy axial loads acting in one direction, needle roller bearings, single 

direction cylindrical and taper roller thrust bearings are suitable, as are spherical roller thrust 

bearings. Spherical roller thrust bearings can also accommodate simultaneously acting radial 

loads. 

For heavy alternating axial loads, two cylindrical roller thrust bearings or two spherical 

roller thrust bearings can be mounted adjacent to each other. 

3.2.3 Combined load 

A combined load comprises a radial and an axial load acting simultaneously. 

The ability of a bearing to carry axial load is determined by the angle of contact, β, the 



 

greater the angle, the more suitable the bearing for axial loads. 
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[billedtekst.start]Figure 3.5: Tandem pairs of angular contact ball bearings.[billedteskst.slut] 

 

[billedtekst.start]Figure 3.6: Double row angular contact ball bearings (3210 and 

3310).[billedteskst.slut] 

 

[billedtekst.start]Figure 3.7: Cylindrical roller bearings with different layout of rings. From left 

to right: NU210, NJ210, N210 and NUP210.[billedteskst.slut] 

The axial load carrying capacity of deep groove ball bearings depends on the internal 

clearance in the bearing. 

For combined loads, single and double row angular contact ball bearings and single row 

taper roller bearings are most commonly used. Although deep groove ball bearings and 

spherical roller bearings are also suitable. 
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[billedtekst.start]Figure 3.8: A double row tapered roller bearing (33210) and a single row 

tapered roller bearing (30210).[billedteskst.slut] 

 

[billedtekst.start]Figure 3.9: Double row spherical roller bearings. To the left a bearing with 

standard bore, to the right a bearing with tapered bore, a tapered seating and a lock 

nut.[billedteskst.slut] 

Single row angular contact ball bearings, taper roller bearings and spherical roller thrust 

bearings can only accommodate axial loads acting in one direction. For axial loads of alternating 

direction these bearings must be combined with a second bearing. 

 

[billedtekst.start]Figure 3.10: A Thrust roller bearing and a thrust ball bearing.[billedteskst.slut] 

 

[billedtekst.start]Figure 3.11: Spherical roller thrust bearing.[billedteskst.slut] 

When the axial component of combined loads is large, it may be supported 

independently from the radial load by a separate bearing. In addition to the thrust bearings 

some radial bearings, e.g. deep groove ball bearings or four-point contact ball bearings are 

suitable for this task. To make sure that the bearing is only subjected to the axial load in such 

cases, the bearing must be mounted with radial clearance for the outer ring. 

When the load acts eccentrically on the bearing, tilting moments will arise. Double row 

bearings, e.g. deep groove or angular contact ball bearings can take up tilting moments. 

However paired single row angular contact ball bearings or taper roller bearings arranged face-

to-face or better still back-to-back, are more suitable. 
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3.2.4 Misalignment 

Angular misalignments between shaft and housing occur for example, when the shaft bends 

under the operating load, when the bearing seats in the housing are not machined at a single 

setting or when shafts are supported by bearings in separate housings that are far apart. 

Generally, the "rigid bearings" cannot accommodate any misalignment or can only 

tolerate very minor misalignments. 

Self-aligning bearings can in opposition to rigid bearings (i.e. self-aligning ball bearings, 

CARB bearings, spherical roller bearings and spherical roller thrust bearings) on the other hand 

accommodate misalignments produced under operating loads and can also compensate for 

errors of alignment. 

3.2.5 Speed 

The speed at which rolling element bearings can be operated is limited by the permissible 

operating temperature. Therefore bearing types with low friction and correspondingly low heat 

generation in the bearing itself are the most suitable for high-speed operation. 

The highest speeds can be achieved with deep groove ball bearings when loads are 

purely radial and with angular contact ball bearings for combined loads. This is particularly 

true for the high precision bearings with special cages. 

Because of their design, thrust bearings cannot operate at such high speeds as radial 

bearings. 

3.2.6 Stiffness 

The stiffness of a rolling element bearing is characterized by the magnitude of the elastic 

deformation (resilience) in the bearing under load. 

Because of the contact conditions between rolling elements and raceways roller bearings 

(e.g. cylindrical or taper roller bearings) have higher stiffness than ball bearings. 

Bearing stiffness can be further enhanced by applying a preload. See [4]. 

3.2.7 Axial displacement 

A shaft is generally supported in a locating and a non-locating bearing, see Figure 3.12. 

Locating bearings provide axial location for the machine component in both directions. 

The most suitable bearings for this task are those that can accommodate combined loads. 

Non-locating bearings must permit movement in the axial direction for the bearings not 

to be additionally stressed when for example, thermal expansion of the shaft takes place. The 

most suitable bearings include needle roller bearings and cylindrical roller bearings which have 

one ring without flanges of the NU and N designs. Cylindrical roller bearings of the NJ design 



 

and some full complement designs can also be used. 

If the required axial displacement is relatively large and at the same time the shaft may 

be misaligned, the CARB type is the ideal non-locating bearing. 

All these bearings permit axial displacement of the rollers with respect to one of the 

raceways so both the inner and the outer rings can be mounted with interference fits. Values for 

the permissible axial displacement within the bearing are given in the relevant product tables. 

If deep groove ball bearings or spherical roller bearings are used as non-locating 

bearings, one of the bearing rings must have a loose fit, see Figure 3.12. Whether this loose fit is 

on the inner or outer ring depends on the load situation. 
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[billedtekst.start]Figure 3.12: Two examples of bearing arrangements for a shaft with a locating 

and a non-locating bearing.[billedteskst.slut] 

3.3 Load carrying capacity and life 

The size of a bearing to be used for an application is initially selected on the basis of its load 

carrying capacity in relation to the loads to be carried and the requirements regarding life and 

reliability. Numerical values termed basic load ratings are used in the calculations to express 

load carrying capacity. Values for the basic dynamic load rating C and the basic static load 

rating C0 are quoted in the bearing tables. 

3.3.1 Basic load ratings 

The basic dynamic load rating C is used for calculations involving dynamically loaded bearings, 

i.e. when selecting a bearing which is to rotate under load. It expresses the bearing load which 

will give an "ISO basic rating life" (defined below) of 106 revolutions. 

The basic dynamic load ratings for bearings have been determined in accordance with 

the methods prescribed by ISO 281:1990. They apply to loads that are constant in both 

magnitude and direction, for radial bearings radial loads and for thrust bearings axial loads that 

act centrically. 

The basic static load rating C0 is used in calculations when the bearings are lo rotate at 

very slow speeds, are to be subjected to very slow oscillating movements or are to be stationary 

under load during certain periods. It must also be taken into account when heavy shock loads 

of short duration act on a rotating (dynamically stressed) bearing. 

The basic static load rating is defined in accordance with ISO 76:1987 as the static load 

that corresponds to a calculated contact stress at the center of the most heavily loaded rolling 

element/raceway contact of 

• 4600MPa for self aligning ball bearings 

• 4200MPa for all other ball bearings 



 

• 4000MPa for all roller bearings 

This stress produces a total permanent deformation of rolling element and raceway 

which is approximately 0.0001Dw, where Dw is the rolling element diameter, for a ball of 10mm 

in diameter this 
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corresponds to a plastic deformation of the two bodies in contact of 1μm. The loads are purely 

radial for radial bearings and centrically acting axial loads for thrust bearings. 

3.3.2 Life 

The life of a rolling bearing is defined as the number of revolutions (or the number of operating 

hours at a given constant speed) which the bearing is capable of taking, before the first sign of 

fatigue (flaking, spalling) occurs on one of its rings or rolling elements. 

Laboratory tests as well as practical experience indicate that seemingly identical 

bearings operating under identical conditions have different lives. A clear definition of the term 

"life" is therefore essential for the calculation of bearing size. 

All information presented on dynamic load ratings is based on the life that 90% of a 

sufficiently large group of apparently identical bearings can be expected to attain or exceed. 

This is called the basic rating life and agrees with the ISO definition. The median life is 

approximately five times the calculated basic rating life. 

There are several other bearing "lives". One of these is the "service life", which is the 

actual life achieved by a specific bearing before it fails. Failure is not generally by fatigue in the 

first instance, but by wear, corrosion, seal failure etc. 

Bearing life can be calculated with various degrees of sophistication, depending on the 

accuracy with which the operating conditions can be defined. 

3.3.3 Basic rating life equation 

The most simple method of life calculation is to use the ISO [5] equation for basic rating life 

which is 

 

or 

 

Where 

L10 basic rating life (at 90% reliability), millions of revolutions.] 

C basic dynamic load rating, kN. 

P equivalent dynamic bearing load, kN. 

p exponent of the life equation, (p = 3 for ball bearings, p = 10/3 for roller bearings). 

For bearings operating at constant speed it may be more convenient to deal with a basic 

rating life expressed in operating hours using the equation 



 

 

or 

 

where 
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L10h basic rating life (at 90% reliability), operating hours. 

n[rpm] rotational speed 

Basic rating life for oscillating bearings 

If a bearing does not rotate, but oscillates from a central position through an amplitude angle of 

7, then: 

 

where 

L10osc basic rating life, millions of cycles 

γ oscillation amplitude (angle of maximum deviation from center position) 

It is not meaningful to calculate a basic rating life if the amplitude of oscillation 7 is very 

small. 

3.3.4 Requisite basic rating life 

When determining the bearing size it is general practice to base the calculations on the basic 

rating life (L10). Therefore it is essential that the required basic rating life for the application 

under consideration is specified. It usually depends on the type of machine and the 

requirements regarding duration of service and operational reliability. 

Influence of operating temperature on bearing material 

At elevated temperatures the dynamic load carrying capacity is reduced. The reduction in 

dynamic load carrying capacity at different temperatures is taken into account by multiplying 

the basic dynamic load rating C by a temperature factor obtained from the following table 

Table 3.1: Values of temperature factor. 

Bearing temperature, °C 150 200 250 300 

Temperature factor 1.00 0.90 0.75 0.60 

A satisfying operation of bearings at elevated temperatures also depends on whether the 

bearings have adequate dimensional stability for the operating temperature, if the chosen 

lubricant will retain its lubricating properties and if the materials of the seals, cage etc. are 

suitable. 

3.3.5 Adjusted rating life equation 

In the classic life equation only the influence of bearing load on the life of a given bearing is 

considered. Where bearings are used in conventional applications, a calculation of the basic 

rating life L10 is normally adequate, since the recommendations regarding requisite life are 



 

based on experience and in fact, therefore, consider factors such as lubrication. 

It may be desirable to consider other factors influencing bearing life in more detail. ISO 

[6] introduces an adjusted rating life equation 

Lna = a1a2a3L10 (3.6) 

where 
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Lna adjusted rating life in millions of revolutions (the index n represents the difference 

between the required reliability and 100%. The term reliability refers to the probability 

that a bearing will attain or exceed a specified life. 

a1 life adjustment factor for reliability. 

a2 life adjustment factor for material. 

a3 life adjustment factor for operating conditions. 

A calculation of the adjusted rating life requires that the operating conditions are well 

defined and that the bearing loads can be accurately determined, i.e. the calculation should 

consider the load spectrum, shaft deflection etc. 

For the generally accepted reliability of 90% and for bearing materials to which the 

dynamic load carrying capacity, C, values correspond, and for normal operating conditions, a1 = 

a2 = a3 = 1 and the equations for the basic and adjusted rating lives become identical. 

Life adjustment factor a1 

The a1 factor for reliability is used to determine lives other than the L10 life, i.e. lives with a 

greater probability than 90%. Values of a1 are given in Table 3.2. 

Table 3.2: Values of life adjustment factor a 1 [4]. 

Reliability 

% 

Lna a1 

[–] 

90 L10a 1 

95 L5a 0.62 

96 L4a 0.53 

97 L3a 0.44 

98 L2a 0.33 

99 L1a 0.21 

Life adjustment factor a2 

The standard steels used by bearing manufacturers have better life properties than the steels on 

which the ISO 281:1990 standard is based. Therefore, the use of a2 = 1 includes a considerable 

safety margin. 

Life adjustment factor a3 

The operating conditions factor a3 is essentially determined by bearing lubrication if the bearing 



 

operating temperatures are not excessive. Changes in material properties at elevated 

temperatures are accounted for by reducing the basic dynamic load ratings, see under 

"Influence of operating temperature". The efficiency of lubrication is primarily determined by 

the degree of surface separation in the rolling contacts of the bearing. If an adequate load-

carrying lubricant film is to be formed, the lubricant must have a given minimum viscosity at 

the operating temperature, i.e. the temperature of the bearing in operation. Under the 

cleanliness conditions normally prevailing in an adequately sealed bearing arrangement, the a3 

factor is based on the viscosity ratio κ. This is defined as the ratio of the actual viscosity v to the 

viscosity v1 required for adequate lubrication, both values being at the operating temperature. 
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The selection of an oil is primarily based on the viscosity required to provide adequate 

lubrication for the bearing at the operating temperature. 

In order for a sufficiently thick film of oil to be formed in the contact area between 

rolling elements and raceways, the oil must retain a minimum viscosity at the operating 

temperature. The kinematic viscosity v1 required at the operating temperature to ensure 

adequate lubrication can be determined from Figure 3.13 provided a mineral oil is used. When 

the operating temperature is known from experience or otherwise determined, the 

corresponding viscosity at the internationally standardized reference temperature of 40°C can 

be obtained from Figure 3.14. 

Table 3.4 lists the ISO viscosity classes showing the range of viscosity for each class at 

40°C. Certain bearing types, e.g. spherical roller bearings, tapered roller bearings and spherical 

roller thrust bearings, normally have a higher operating temperature than deep groove ball 

bearings and cylindrical roller bearings under comparable operating conditions. 

 

[billedtekst.start]Figure 3.13: Recommended lubricant viscosity at operating temperature 

[4].[billedteskst.slut] 



 

Side 64 

 

[billedtekst.start]Figure 3.14: Temperature-viscosity relationship [4].[billedteskst.slut] 

3.3.6 Combination of life adjustment factors a2 and a3 

The factors a2 and a3 are interdependent as explained above and the manufacturer SKF has 

replaced them in the adjusted rating life equation by the combined factor a23 for material and 

lubrication so the equation becomes 

Lna = a1a23L10 (3.7) 

Provided cleanliness is normal, values of a23 can be obtained from Figure 3.15 as a function of 

the viscosity ratio  If lubricants containing additives of the EP type are used, higher values 

may be obtained when κ < 1 (shaded area). 

3.3.7 SKF Life Theory 

The classic L10 life equation standardized by ISO has been expanded to take the fatigue load 

limit and several other factors related to lubrication and contamination into account. 
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[billedtekst.start]Figure 3.15: The relationship between κ and a23 [4].[billedteskst.slut] 

The fatigue load limit Pu represents the load below which fatigue will not occur in the 

bearing. Values of Pu will be found in the product tables. 

To give an idea of the significance of the life theory, a simplified equation illustrating the 

relationship with the two ISO rating life equations has been derived 

 

or simply 

Lnaa = a1aSKFL10 (3.9) 

Where 

Lnaa rating life to the SKF Life Theory, millions of revolutions 

a1 life adjustment factor for reliability, see Table 3.2 

aSKF life adjustment factor based on the SKF Life Theory 

Life adjustment factor aSKF· This factor represents a verycomplex relationship of several 

factors including lubrication conditions and is related to the viscosity ratio κ, see Figure 3.15. 

Values of aSKF are given as a function of ηc (Pu/P) for different values of κ in the Figure 3.16. 
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[billedtekst.start]Figure 3.16: The aSKF factor for ball bearings [4], If κ > 4 use κ = 4 curve. As the 

value of ηc · (Pu/P) tends to zero, aSKF tends to 0.1 for all values of κ.[billedteskst.slut] 

 

The figures are drawn for typical values of a general safety factor of the type normally 

associated with fatigue load limits for other mechanical components. The value of this factor 

depends on the bearing type. 

Adjustment factor ηc for contamination. This factor has been introduced to take 

contamination into account. The influence of contamination on bearing fatigue life depends on a 

number of parameters including bearing size, relative lubricant film thickness, size and 

distribution of solid contaminant particles 
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as well as types of contaminant (soft, hard etc.) The influence of these parameters on bearing life 

is complex and many of the parameters are difficult to quantify. It is therefore difficult to 

allocate precise values to ηC which would have general validity. However, some guidance will 

be found from Table 3.3. 

Table 3.3: Values of adjustment factor ηc for different degrees of contamination [4], 

Contamination condition Adjustment factor 

ηc 

Very clean 

Debris size of the order of the lubricant film thickness 
1 

Clean 

Conditions typical of bearings greased for life and sealed 
0.8 

Normal 

Conditions typical of bearings greased for life and shielded 
0.5 

Contaminated 

Conditions typical of bearings without integral seals; coarse lubricant 

filters and/or particle ingress from surroundings 

0.5-0.1 

Heavily contaminated 0 

An indication of the strong effect of contamination on fatigue life can be obtained from 

the following example. Deep groove ball bearings 6305 with and without seals were tested in a 

strongly contaminated environment (gearbox with considerable artificially introduced debris). 

No failures of the sealed bearings occurred and the tests were stopped for practical reasons after 

the sealed bearings had run for periods that were at least 30 times longer than the experimental 

lives of the unsealed bearings. The unsealed bearing lives equalled 10% of the calculated L10 life, 

which corresponds to a ηc factor of 0 as indicated in Table 3.3. 

The Figure 3.16 indicates the great importance of cleanliness in lubrication by the rapid 

reduction in the asKF factor with diminishing ηc. When bearings with integral seals are used, 

contamination of the bearing can be kept to a minimum, but the lives of lubricant and seals 

must also be taken into consideration. 

3.4 Calculation example 

A deep groove ball bearing 6309 made of standard steel is to operate at a speed of 5000rpm 

under a constant radial load Fr = 8000N . Oil lubrication is to be used, the oil having a kinematic 



 

viscosity v = 20mm2/s at the operating temperature. The desired reliability is 90% and it is 

assumed that the operating conditions are ultra-clean. What will be the L10, Lna and Lnaa lives? 

a) Basic rating life L10 (for 90% reliability) From the product tables, the basic dynamic load 

rating for bearing 6309 is C = 52700N. Since the load is purely radial, P = Fr = 8000N (see 

"Equivalent dynamic bearing load") and therefore 

 

b) Adjusted rating life Lna 

Lna = a1a23 L10 (3.11) 
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Table 3.4: Specification of kinematic viscosity [4]. 

Viscosity class according to ISO Kinematic viscosity 

at 40° C [mm2/s] 

mean min max 

ISO VG 2 2.2 1.98 2.42 

ISO VG 3 3.2 2.88 3.52 

ISO VG 5 4.6 4.14 5.06 

ISO VG 7 6.8 6.12 7.48 

ISO VG 10 10 9.00 11.0 

ISO VG 15 15 13.5 16.5 

ISO VG 22 22 19.8 24.2 

ISO VG 32 32 28.8 35.2 

ISO VG 46 46 41.4 50.6 

ISO VG 68 68 61.2 74.8 

ISO VG 100 100 90.0 110 

ISO VG 150 150 135 165 

ISO VG 220 220 198 242 

ISO VG 320 320 288 352 

ISO VG 460 460 414 506 

ISO VG 680 680 612 748 

ISO VG 1000 1000 900 1100 

ISO VG 1500 1500 1350 1650 

Since a reliability of 90% is required, the L10alife is to be calculated and a1 = 1, see Table 3.2. The 

a23 factor is found in the following way: for bearing 6309 using d and D from the product tables, 



 

dm = 72.5mm and the requisite oil viscosity at the operating temperature for a speed of 5000rpm 

is v1 = 7mm2/s, k = v/v1 = 2.7 and the value of a23 = 1.92. 

L10a = 1 · 1.92 · 286 = 550 million revolutions (3.12) 

c) Rating life to SKF Life Theory 

Lnaa = a1aSKF L10 (3.13) 

As the desired reliability is 90%, the L10aa life is calculated and a1 = 1. From the product tables Pu 

= 1.340kN and Pu/P = 1.34/8 = 0.17. As the conditions are ultra-clean ηc = 1 and therefore for K = 

2.7 the value of CISKF is asKF = 14 so that according to the SKF Life Theory 

L10aa= 1 · 14 · 286 = 4000 million revolutions (3.14) 

To obtain the corresponding lives in operating hours we multiply by (1 · 106)/(60n) where n = 

5000rpm. The different lives are then L10h = 950 operating hours, L10ah = 1800 operating hours, 

L10aah = 13300 operating hours. 

If the example were to be calculated for contaminated conditions such that ηc = 0.2, then asKF = 

0.3 and 

L10aa = 1 · 0.3 · 286 = 86 million revolutions (3.15) 
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3.5 Calculation of dynamic bearing loads 

The loads acting on the bearing can be calculated if the external forces are known. When 

calculating the load components for a single bearing, the shaft is considered as being a beam 

supported on rigid, moment-free supports. Elastic deformations in the bearing, the housing or 

the machine frame are ignored and so are the moments produced in the bearing as a result of 

shaft deflection. These simplifications are necessary if a bearing arrangement is to be calculated 

by hand. The standardized methods for calculating basic load ratings and equivalent bearing 

loads are based on similar assumptions. 

3.5.1 Gear trains 

With a gear train, the theoretical tooth forces can be calculated from the power transmitted and 

the design characteristics of the gear teeth. Additional dynamic forces may be present, 

produced either in the gear itself or by the input drive or power take-off. Other dynamic forces 

in gears result from errors of shape of the teeth and unbalance of the rotating components. 

Because of the requirements for quiet running, gears are made to accommodate high standards 

of accuracy to ensure that the forces are generally so small that they can be neglected when 

making bearing calculations. Additional forces arising from the type and mode of operation of 

the machines coupled to the gear can only be determined when the operating conditions are 

known. Their influence on the rating lives of the bearings is considered using an "operation" 

factor. 

3.5.2 Belt drives 

For belt drives it is necessary to take into account the effective belt pull (circumferential force) 

which is dependent on the transmitted torque, when calculating bearing loads. The belt pull 

must be multiplied by a factor that is dependent on the type of belt, its preload, belt tension and 

any additional dynamic forces. Values are usually published by belt manufacturers. 

3.5.3 Equivalent dynamic bearing load 

If the calculated bearing load F obtained when using the above information is found to fulfil the 

requirements for the basic dynamic load rating C, i.e. the load is constant in magnitude and 

direction and acts radially on a radial bearing or axially and centrically on a thrust bearing, then 

P F and the load may be inserted directly in the life equations. 

In all other cases it is necessary to calculate the equivalent dynamic bearing load. This is 

defined as that equivalent load, constant in magnitude and direction, acting radially on radial 

bearings or axially and centrically on a thrust bearing which, if applied, would have the same 

influence on bearing life as the actual loads to which the bearing is subjected. 



 

3.5.4 Constant bearing load 

Radial bearings are often subjected to simultaneously acting radial and axial loads. If the 

resultant load is constant in magnitude and direction, the equivalent dynamic bearing load P 

can be obtained from the general equation 

P = XFr + YFa (3.16) 

where P is the equivalent dynamic bearing load in N, Fr is the actual radial bearing load 

in N, Fa is the actual axial bearing load in N, X is the radial load factor for the bearing and Y is 

the axial load factor for the bearing. 
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An additional axial load only influences the equivalent dynamic load P for a single row 

radial bearing if the ratio Fa/Fr exceeds a certain limiting factor e. With double row bearings 

even light axial loads are generally significant. 

The same general equation is also applied for thrust bearings that can take both axial 

and radial loads, e.g. spherical roller thrust bearings. For thrust bearings that can carry only 

purely axial loads, i.e. thrust ball bearings and cylindrical, needle and taper roller thrust 

bearings, the equation can be simplified provided the load acts centrically. 

Notice that the detailed procedure for finding the equivalent load differs from type to 

type of the bearings. 

3.5.5 Fluctuating bearing load 

In many cases the magnitude of the load fluctuates. If the load can be divided into a number of 

forces which are constant for a given number of revolutions, but which are different in 

magnitude from each other, we use "Miners rule" to determine the lifetime. F1, F2... are the 

constant loads during U1 U2, life fraction intervals. The sum of all life fraction intervals is 

U = U1 + U2 + ... ≤ 1 (3.17) 

See Figure 3.17. Denoting the number of revolutions required under load F1 by N1, under 

load F2 by N2 etc., and the total number of revolutions required by N we can write Miners rule 

as 

 

where L10m1 L10m2, L10m3,… are the rating lives under loads F1,F2, ... and L10m is the total rating life 

in the combined load situation. Rearranging gives 

 

and 

 

If bearing speed is constant and the bearing load direction is constant, but the 

magnitude of the load constantly fluctuates between a minimum value Fmin and a maximum 

value Fmax , see Figure 3.17, the mean load can be obtained from 

 

If, as illustrated in Figure 3.17, the load on the bearing consists of a load F1 which is 

constant in magnitude and direction (e.g. the weight of a rotor) and a rotating constant load F2 

(e.g. an unbalance load), the mean load can be obtained from 



 

Fm = fm (F1 + F2) (3.22) 

values for the factor fm can be obtained from Figure 3.17. 

If the fluctuating load acts in a purely radial direction for radial bearings and in a purely 

axial direction for thrust bearings, then the equivalent dynamic bearing load P = Fm. However if 

the load acts in any other direction, the general equation for the equivalent dynamic bearing 

load must be used and Fr and Fa are replaced by the radial and axial components of the mean 

load Fm respectively. 
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[billedtekst start]Figure 3.17: Types of load combinations [4],[billedtekst slut] 

3.5.6 Requisite minimum load 

If a rolling bearing is to operate satisfactorily it must be subjected to a given minimum load. 

As a general "rule of thumb" a load corresponding to 0.02C should be imposed on roller 

bearings and a load corresponding to 0.01C on ball bearings. The importance of applying this 

minimum load increases where accelerations in the bearing are high, and where speeds are 

higher than 75% of the speed ratings given in the product tables. 

More detailed recommendations for calculating the requisite minimum loads for the 

different bearing types may be given by the bearing manufacturer. 

3.6 Selecting bearing size using the static load carrying 

capacity 

Bearing size should be selected on the basis of the static load ratings C0 instead of on bearing life 

under one of the following conditions: 

• The bearing is stationary and is subjected to continuous or intermittent (shock) 

loads. 

• The bearing rotates under load at very slow speed and is only required to have a 



 

short life (the life equation in this case, for a given equivalent load P would give 

such a low requisite basic dynamic load rating C that the bearing selected on a 

life basis would be seriously overloaded in service). 
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• The bearing makes slow oscillating or alignment movements under load. 

• The bearing rotates and in addition to the normal operating loads, it has to 

sustain heavy shock loads that act during a fraction of a revolution. 

In these cases, the permissible load for a bearing is determined not by material fatigue, 

but by the permanent deformation at the rolling element/raceway contacts caused by the load. 

3.6.1 Stationary bearing 

Loads acting on a stationary bearing or one which is slowly oscillating, as well as shock loads 

on a rotating bearing which act for only part of a revolution, produce flattened areas on the 

rolling elements and indentations in the raceways. The indentations may be irregularly spaced 

around the raceway or may be evenly spaced at positions corresponding to the spacing of the 

rolling elements. If the load acts for several revolutions the deformation will be evenly 

distributed over the whole raceway. 

Permanent deformations in the bearing can lead to vibration in the bearing, noisy 

operation and increased friction. It is also possible that the internal clearance will increase or the 

character of the fits may be changed. 

The extent to which these changes are detrimental to bearing performance depends on 

the demands placed on the bearing in a particular application. It is therefore necessary to ensure 

that permanent deformations cannot occur or occur to a very limited extent only. This is done 

by selecting a bearing with sufficiently high static load carrying capacity, and at least one of the 

following demands has to be satisfied: 

• Quiet running (e.g. for electric motors). 

• Vibration-free operation (e.g. for machine tools). 

• Constant bearing friction torque (e.g. for measuring apparatus and test 

equipment). 

• Low starling friction under load (e.g. for cranes). 

3.6.2 Static load rating 

When determining bearing size based on static load carrying capacity a given safety factor s0 is 

used to calculate the requisite basic static load rating. This factor represents the relationship 

between the basic static load rating C0 and the equivalent static bearing load P0. 

Static loads comprising radial and axial components must be converted into an 

equivalent static bearing load. This is defined as that load (radial for radial bearings and axial 

for thrust bearings) which, if applied, would cause the same permanent deformation in the 

bearing as the actual load. It is obtained from the general equation 

P0 = X0Fr + Y0Fa (3.23) 



 

where P0 is the equivalent static bearing load in N, Fr is the actual radial bearing load in 

N, Fa is the actual axial bearing load in N, X0 is the radial load factor for the bearing and Y0 is the 

axial load factor for the bearing. 

When calculating P0, the maximum load which can occur should be used and its radial 

and axial components inserted in the equation above. If a static load acts in different directions 

on a bearing, the magnitude of these components will change. In such cases, the components of 

the load giving the largest value of the equivalent static bearing load P0 should be used. 
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3.6.3 Requisite basic static load rating 

The requisite basic static load rating C0 can be determined from 

C0 = S0P0 (3.24) 

where 

C0[N] basic static load rating 

P0[N] equivalent static bearing load 

s0 static safety factor 

3.7 Radial location of bearings – Selection of fit 

When selecting a fit between inner bearing ring and shaft and between outer bearing ring and 

housing, the load situation should be considered. 

Load conditions 

There are three different load situations, characterized as "rotating load", "stationary load" and 

"direction of load indeterminate". 

"Rotating load" pertains if the bearing ring rotates and the load is stationary, or if the ring is 

stationary and the load rotates so that all points on the raceway are subjected to load in the 

course of one revolution. 

A bearing ring subjected to a rotating load will tend to turn on its seating if mounted with a 

clearance fit, and may result in wearing (fretting corrosion) of the surfaces involved. To prevent 

this, an interference fit must be specified. The interference required is dictated by the operating 

conditions. 

"Stationary load" pertains if the bearing ring is stationary and the load is also stationary, or if 

the ring and the load rotate at the same speed, so that the load is always directed towards the 

same position on the raceway. 

"Direction of load indeterminate" represents variable external loads, shock loads, vibrations 

and unbalance loads in high-speed machines. These give rise to changes in the direction of load, 

which cannot be accurately described. When the direction of load is indeterminate and 

particularly where heavy loads are involved, it is desirable that both rings have an interference 

fit. For the inner ring the recommended fit for a rotating load is normally used. If the outer ring 

must be free to move axially in the housing, a somewhat looser fit than that recommended for a 

rotating load may be used. 

Operating and load conditions for interference fit between inner ring and shaft (condition 1) 

• Rotating inner ring 

• Stationary outer ring 



 

• Constant load direction 

and 

• Rotating load on inner ring 
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• Stationary load on outer ring 

Interference fit is required between inner ring and shaft as the load is varying in 

direction relative to the inner ring. 

Clearance fit can be used between outer ring and housing as the load has a constant 

direction relative to the outer ring. 

An example of this load situation is belt-driven shafts. 

Operating and load conditions for interference fit between inner ring and shaft (condition 2) 

• Stationary inner ring 

• Rotating outer ring 

• Load rotates with outer ring 

or 

• Rotating load on inner ring 

• Stationary load on outer ring 

Interference fit is required between inner ring and shaft as the load is varying in 

direction relative to the inner ring. 

Clearance fit can be used between outer ring and housing as the load has a constant 

direction relative to the outer ring. 

An example of this load situation is merry-go-round drives. 

Operating and load conditions for interference fit between outer ring and housing (condition 

1) 

• Stationary inner ring 

• Rotating outer ring 

• Constant load direction 

and 

• Stationary load on inner ring 

• Rotating load on outer ring 

Interference fit is required between outer ring and housing as the load is varying in 

direction relative to the outer ring. 

Clearance fit can be used between inner ring and shaft as the load has a constant 

direction relative to the inner ring. 

An example of this load situation is conveyor idlers and car wheel hub bearings. 

Operating and load conditions for interference fit between outer ring and housing (condition 



 

2) 

• Rotating inner ring 

• Stationary outer ring 

• Load rotates with inner ring 
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or 

• Stationary load on inner ring 

• Rotating load on outer ring 

Interference fit is required between outer ring and housing as the load is varying in 

direction relative to the outer ring. 

Clearance fit can be used between inner ring and shaft as the load has a constant 

direction relative to the inner ring. Examples of this load situation are vibratory applications 

and vibrating motors. 

Magnitude of the load 

The interference fit of a bearing inner ring on its seating will be loosened with increasing load as 

the ring deforms. Under the influence of rotating load the ring may begin to creep. The degree 

of interference must be related to the magnitude of the load; the heavier the load, the greater the 

interference fit required. 

Bearing internal clearance 

An interference fit of a bearing on a shaft or in a housing means that the ring is elastically 

deformed (expanded or compressed) and the bearing internal clearance is reduced. A certain 

minimum clearance should remain. 

Temperature conditions 

In many applications the outer ring has a lower temperature in operation than the inner ring. 

This might lead to reduced internal clearance. 

In service, bearing rings normally reach a temperature that is higher than the one of the 

components to which they are fitted. This can result in a reduction of the fit of the inner ring on 

its seating, while an outer ring expansion may prevent the desired axial displacement of the 

ring in its housing. Temperature differentials and the direction of heat flow in the bearing 

arrangement must therefore be carefully considered. 

Running accuracy requirements 

To reduce resilience and vibration, clearance fits should generally not be used for bearings 

where high demands are placed on running accuracy. Bearing seats on the shaft and in the 

housing should be made to tolerance grade 5 for the shaft and to tolerance grade 6 for the 

housing. Tight tolerances should also be applied to the cylindricity. 

Displacement of the non-locating bearing 

If non-separable bearings are used as non-locating bearings it is imperative that one of the 

bearing rings is free to move axially at all limes during operation. Adopting a clearance fit for 

the ring that carries a stationary load will provide this. 

If cylindrical roller bearings have one ring without flanges, needle roller bearings or 



 

CARB toroidal roller bearings are used, both bearing rings may be mounted with an 

interference fit because axial displacement will take place within the bearing. 
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3.8 Bearing lubrication 

The selection of an oil is primarily based on the viscosity required to provide adequate 

lubrication for the bearing at the operating temperature. 

The viscosity of an oil is temperature dependent, so the viscosity becomes lower as the 

temperature rises. 

In order to obtain a sufficiently thick film of oil in the contact area between rolling 

elements and raceways, the oil must retain a minimum viscosity at the operating temperature. 

The kinematic viscosity v1 required at the operating temperature to ensure adequate lubrication 

can be determined from Figure 3.14, provided a mineral oil is used. 

When the operating temperature is known from experience or otherwise determined, 

the corresponding viscosity at the internationally standardized reference temperature of 40°C or 

other test temperatures (e.g. 20°C) can be obtained from Figure 3.15, which is compiled for a 

viscosity index of 85 or can be calculated. 

Table 3.4 lists the ISO viscosity classes showing the range of viscosity for each class at 

40°C. Certain bearing types, e.g. spherical roller bearings, taper roller bearings and spherical 

roller thrust bearings, normally have a higher operating temperature than other bearing types, 

e.g. deep groove ball bearings and cylindrical roller bearings under comparable operating 

conditions. 

When selecting the oil the following aspects should be considered. 

• Bearing life may be extended by selecting an oil whose viscosity v at the 

operating temperature is somewhat higher than v\ . However, since increased 

viscosity raises the bearing operating temperature there is frequently a practical 

limit to the life enhancement obtained by this means. 

• If the viscosity ratio K = v/v1 is less than 1 an oil containing EP additives is 

recommended and if K is less than 0.4 an oil with such additives must be used. 

An oil with EP additives may also enhance operational reliability in cases where 

K > 1 and medium and large size roller bearings are in operation. 
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Table 3.5: Fits between bearing inner ring and shaft [4], 

Fits for solid steel shafts 

Radial bearings with cylindrical bore 

Conditions Examples Shaft diameter, mm Tolerance 

Ball 

bearings 

Cylindrical needle 

and taper roller 

bearings 

Spherical 

roller roller 

Rotating inner ring load or direction of load indeterminate 

Light and variable 

loads (P ≦ 0.06C) 

Conveyor, lightly 

loaded gearbox 

bearings 

(18)to 100 ≦ 40 – j6 

(100) to 140 (40) to 100 – k6 

Normal and heavy 

loads (P > 0.06C) 

Bearing applications 

generally, electric 

motors, turbines, 

pumps internal 

combustion engines, 

gearing woodworking 

machines 

≦18 – – j5 

(18) to 100 ≦ 40 ≦ 40 k5( k6) 

(100) to 140 (40) to 100 (40) to 65 m5( m6) 

(140) to 200 (100) to 140 (65) to 100 m6 

(200) to 280 (140) to 200 (100) to 140 n6 

– (200) to 400 (140) to 280 p6 

– – (280) to 500 r6 

– – > 500 r7 

Very heavy loads 

and shock loads 

with difficult 

working conditions 

(P > 0.12C) 

Axleboxes for heavy 

railway vehicles, 

traction motors, rolling 

mills 

– (50) to 140 (50) to 100 n6 

– (140) to 200 (100) to 140 p6 

– > 200 > 140 r6 



 

    

High demands on 

running accuracy 

with light loads (P 

≦ 0.06C) 

Machine tools ≦ 18 – – h5 

(18) to 100 ≦ 40 – j5 

(100) to 200 (40) to 140 – k5 

– (140) to 200 – m5 

Stationary inner ring load 

Easy axial 

displacement of 

inner ring on shaft 

desirable 

Wheels on non–

rotating axis 

   g6 

Easy axial 

displacement of 

inner ring on shaft 

unnecessary 

Tension pulleys, rope 

sheaves 

   h6 

Axial loads only 

 Bearing applications of 

all kinds 

≦ 250 ≦ 250 ≦ 250 j6 

 > 250 > 250 > 250 j s6 
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Table 3.6: Fits between bearing outer ring and housing [4]. 

Fits for cast iron and steel housings 

Radial bearings - solid housing 

Conditions Examples Tolerance Displacement of 

outer ring 

Rotating outer ring load 

Heavy loads on bearings in thin-

walled housings, heavy shock loads 

(P > 0.12C) 

Roller bearing wheel hubs, 

big-end bearings 

P7 Cannot be 

displaced 

Normal and heavy loads (P > 0.06C) Ball bearing wheel hubs 

big-end bearings, crane 

traveling wheels 

N7 Cannot be 

displaced 

Light and variable loads (P ≦ 

0.06C) 

Conveyor rollers, rope 

sheaves, belt tension 

pulleys 

M7 Cannot be 

displaced 

Direction of load indeterminate 

Heavy shock loads Electric traction motors M7 Cannot be 

displaced 

Normal and heavy loads (P > 0.06C), 

axial displacement of outer ring 

unnecessary 

Electric Motors, pumps 

crankshaft bearing 

K7 Cannot be 

displaced as a role 

Accurate or silent running   

 Small electric motors J6 Can be displaced 

3.9 Nomenclature 

ax - Life adjustment factor for reliability 

asKF - Life adjustment factor - SKF life theory 



 

d mm Bearing diameter 

dm mm Bearing mean diameter 

FM - Load factor 

N rpm Rotational speed 

P - Exponent in dynamic bearing lifetime expression 

t °C Temperature 

C N Dynamic load carrying capacity 

C0 N Static load carrying capacity 

D mm External diameter of bearing 

Dw mm Rolling element diameter 

Fa N Axial load on bearing 

Fm N Mean load (axial or radial) on bearing 
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Fr N Radial load on bearing 

L10 mill.rev Bearing lifetime 

L10h hours Bearing lifetime 

N – Number of revolutions 

P N Actual dynamic load on bearing 

P0 N Actual static load on bearing 

Pu – Fatigue load limit 

U - Lifetime 

X – Radial load factor 

Y – Axial load factor 

β – The contact angle 

γ rad Oscillating amplitude angle 

K – Viscosity ratio 

ηC – Contamination factor 

V mm2/s Kinematic viscosity of lubricant 
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Chapter 4 Shafts 

4.1 Introduction 

A shaft or axle is usually of circular cross section and mounted with machine elements such as 

bearings, gears, pulleys, sprockets and other machine elements. The analysis and corresponding 

dimensioning of the shaft or axle depend strongly on whether it is rotating or stationary. 

Shafts and axles are normally designed for the specific application unlike bearings, belts 

and chain drives. Each shaft and axle should be designed specifically for the application, 

considering the mounted elements, operating loads and other operating conditions. An example 

of a shaft is shown in Figure 4.1. 

 

[billedtekst start]Figure 4.1: Example of a shaft.[billedtekst slut] 

4.1.1 Terminology 

Before going further into the analysis it might be useful to clarify the difference between shafts 

and axles based on their distinct ways of operation. 

Axles. The main purpose of an axle is to support different types of machine elements and it is 

only loaded with shear forces and bending moments. The axle may be fixed to a frame or 

support or it may rotate. Typical examples of non-rotating axles are the axle in the wire pulley 

in a lifting block or an axle carrying the wheels of a railway passenger car. The pulleys, wheels 

and so on are mounted on bearings 
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that in turn are mounted on the axle. Rotating axles are used in other applications. Examples of 

rotating axles are seen in support rollers in belt conveyors or the axles in goods wagons. 

Shafts. Shafts are normally rotating and the main purpose is to transmit power and thereby 

torque. A shaft is mounted with machine elements which can lead the torque into and out from 

the shaft. Typical elements mounted on shafts are gears, belt pulleys, chain sprockets, 

couplings, brakes and so on. Typical examples of shafts are the input -, output - and 

intermediate shaft in a gear transmission. A shaft is supported in at least two bearings. Long 

and slender shafts, as for example propeller shafts in ships may be supported by more than two 

bearings to prevent transversal vibrations. 

In this chapter we will focus on shafts since they represent the most general load 

situation, but the equations are fully applicable to axles. It is through out the chapter assumed 

that the shaft is made from a ductile material. 

4.2 Types of load 

Before a strength (stress) based dimensioning of a shaft can be done the load situation must be 

clarified. This means that, i.e., bearing reactions and distribution of axial force, bending moment 

and torque must be found as a first step. 

Shear forces Shear force loading is especially note-worthy for short shafts. The 

slenderness ratio is defined as 

 

where L is the effective length of the shaft (here we make the assumption that L is the distance 

between supporting bearings), I cross sectional moment of inertia and A the cross sectional area. 

From e.g. [6] we know that if Г < 20 we should include the influence from the shear force on the 

deflection, i.e., we cannot use simple Bemoulli-Euler beam theory. For circular cross sections Г < 

20 corresponds to L/D < 5 where D is the diameter of the shaft. 

Shafts in gearboxes are normally very short in order to prevent bending deflection of the 

shaft and here the maximum shear deformation is of the same order of magnitude as the 

bending deformation. Generally, the shear stress is quite small in short shafts in gearboxes. 

Bending moment Bending moment loading on a shaft is caused by the forces acting on 

the machine elements mounted on the shaft. Power transmitting components such as gear 

wheels and belt pulleys give rise to forces and moments giving the bending moment loading. 

The maximum bending stress appears at the outer surface of the shaft. 

Torque In power transmitting components a torsional moment (a torque) is found in all 

or part of the shaft. 

Shafts may be subjected to a combination of loads coming from axial forces, bending and 

torsional moments. The loads may be combined of stationary and time varying components, 

depending on the specific application. Shafts used in gears for transmission of power will be 



 

subjected to an almost constant torque, together with a reversed bending moment(see later in 

this chapter). 
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4.3 Shaft design considerations 

In normal shaft design the shaft is usually designed specifically for a certain purpose. This 

means that a shaft is normally not just a straight shaft with no changes in the cross sectional 

dimension. We have shoulders/steps to accommodate elements such as bearings, sprockets and 

gears etc. Generally, there will also be any given number of shaft-hub connections including, 

i.e., keys, snap rings and cross pins. This is described in details in Chapter 5. Most of these 

connections require grooves or holes through the shaft. Each of these changes in geometry will 

cause stress concentrations. By different means we may reduce the size of the stress 

concentrations, but they will be present and we must deal with them. Also important in shaft 

design is that the support and the connection of the shaft should be such that it will allow for 

elongation due to temperature in a way that does not result in stresses. 

The shaft designer needs to make decisions on a number of issues (in mentioned order): 

– Size and spacing of components being supported 

– Bearing positions, to support the shaft 

– Appropriate shaft design considering assembly possibilities 

– Attachment method for transmission elements to the shaft (pins, keys, splines, press or 

shrink fit) 

– Appropriate shaft diameters and shaft material 

4.3.1 Possible modes of failure 

The shaft geometry may be determined by considering a number of parameters: 

• Maximum allowable stress (yield criterion) 

• Fatigue failure 

• Maximum allowable deflections 

• Critical speeds 

hopefully it should be clear that the design of shafts involves many steps and iterations in the 

design process are probably needed. 

4.4 Static loading 

Stresses developed in a shaft during operation should never exceed the yield stress of the shaft 

material. As previously mentioned a shaft is normally subject to a combination of loads, which 

in turn means that the shaft experiences a combination of stresses such as bending stress, 

torsional shear stress, shear stress due to shear force etc. To compare the combined stress 

situation to the materials yield strength a reference stress must be determined based on one of 

the known stress criteria such as the "Distortion Energy Theory" (von Mises) or the "Maximum 



 

Shear Stress Criterion" (Tresca). In this chapter we consider the criterion based on von Mises. 

To find the stresses in the shaft it is necessary to find the bending moment distribution 

and the distribution of the shear stress. Shafts are inherently three dimensional so static 

equilibrium in 3D is needed. 
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Static equilibrium in 3D 

The present subsection is included to show a simple method of describing equilibrium in 3D, 

especially in relation to the moment equilibrium. The general definition of static equilibrium is 

∑{F} = {0,0,0}T (4.2) 

∑{M} = {0,0,0}T (4.3) 

i.e., the sum of forces is zero and the sum of moments is zero. The shaft is not accelerated, but is 

rotating at constant speed so we should include the gyroscopic forces due to the rotation in the 

moment equilibrium, see e.g. [5], If we assume that the axis of rotation is balanced, i.e., the 

rotation axes is a principal axes of inertia then the gyroscopic forces are zero and we are left 

with (4.3). 

 

[billedtekst start]Figure 4.2: General force in 3D.[billedtekst slut] 

The moment of a force around a point, a, as shown in Figure 4.2 is by definition given as 

a cross product 

{M} = {S} × {F} (4.4) 

with distance vector {s} = {s1, S2, S3}T and force vector {F} = {F1 F2, F3}T. The definition given in 

(4.4) is directly related to Figure 4.2 and the definition of the distance vector {S} (with other 

definitions the sign changes). It follows that in order to perform successfully moment 

equilibrium, we must be able to perform the cross product of two vectors. 

It can be shown that 

 

where the skew-matrix  is defined as 

 

The matrix  is a skew symmetric matrix, i.e.,  (therefore the name). Many 

mathematical simplifications can be made using the skew-matrix as seen in [3], The primary 

advantage of the definition of the skew-matrix is that it transforms the cross product into a form 

where all standard vector matrix operations apply. 
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[billedtekst start]Figure 4.3: Definition of forces, moments and normal stress on beam cross 

section.[billedtekst slut] 

Bending moment, torsion and axial loading 

Assuming that the reaction forces are known, we can find the moment distribution in the shaft. 

In 3D we use the definition given in Figure 4.3. 

Due to the symmetry of the shaft we have that the normal strain in the original straight 

beam is 

 

where є0 is the strain at the neutral axes, pz and py is radius of curvature of the beam in the plane 

x–y and z – x respectively. The normal stress is given as 

σ(y,z) = Eє(y,z) (4.8) 

where E is the modulus of elasticity. By force equilibrium we have 

 

where A is the cross sectional area and the definition of the cross sectional moment of inertia is 

used for Iy and Iz. 

For a circular shaft of diameter d we have that Iy = Iz and the maximum stress is therefore 

given by 

 

i.e., the maximum bending moment is given by 
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Both the shear forces Vx and Vy and the torsion T result in shear stress. We may define the 

resulting shear force as 

 

For a circular cross section we then know that the maximum shear stress due to the shear force 

is 

 

If we assume that the shear forces and bending moments are the result of the same 

external forces then they are perpendicular to each other. From this follows that the normal 

stress due to the bending moment is maximum, when the shear stress due to the shear force is 

zero and opposite. This is however not the case for the shear stress from torsion, which is given 

by 

 

where T = Mx is the torsional moment, r is the distance from the center and K is the cross 

sectional torsional stiffness factor. For circular cross sections we know that K is identical to the 

polar cross sectional moment K = Ip = 2I x = 2I y. 

It follows that the stress is multi-axial and we can calculate a reference stress (non-

physical but related to the work of the deviatoric forces) defined by von Mises, in this case 

given by 

 

It is important to remember that stresses are defined in points, i.e., the normal stress σ 

and the shear stress τ must be at the same point to be used in (4.17). For a circular shaft this 

leads to 

 

You should notice that the shear stress specified in (4.19) is only due to the torsion. We 

have 



 

 

where σy is the yield stress and ns is the safety factor. From (4.20) we see that if there is no axial 

loading P, and the required safety factor ns is know the diameter can be explicitly given 
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The stresses calculated in this section are nominal stresses. In practical designs of shafts 

there is a need for connecting with hubs. This requires design changes different from the simple 

straight shaft. These design changes normally result in stress concentrations. It is assumed that 

the shafts are made from ductile material and for this reason these stress concentrations are of 

no interest when designing with respect to static loading. The shaft will yield locally, and it is 

only if the whole cross section yields that we will have a problem. However we can not neglect 

the stress concentrations when designing with respect to fatigue as done in Section 4.5. 

4.5 Design for fatigue (cyclic load/dynamic load) 

Under conditions where a component is subjected to repeated application of a load, it is 

possible that this component will experience failure, though the applied stress is well below the 

yield stress. This failure mode is known as fatigue. In dynamic loading the main design criteria 

with respect to stresses is therefore fatigue, and we cannot compare the stress level with the 

yield stress. Instead we must find the material fatigue stress or endurance stress. 

Assuming that the time dependent loading is sinusoidal we generally split the time 

dependent loading into three cases. 

 

[billedtekst start]Figure 4.4: Different types of sinusoidal loading (the graphs show stress as a 

function of time).[billedtekst slut] 

If we load a rotating shaft with a constant transverse force the bending stress will be 

fully reversed although the loading (force) is constant. Shafts must therefore be designed with 

respect to fatigue, because of the rotation. 

The important stress components in relation to fatigue are the amplitude of the stress 

variation σa and the mean value σm, these are given by 

 

in the case of sinusoidal loading as shown in Figure 10.2. 



 

4.5.1 Stress concentration 

In dynamic loading the failure mode is fracture so we cannot neglect stress concentrations as 

done in static loading of ductile materials. Stress concentration are normally defined as 
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σmax = Ktσnom (4.24) 

τmax = Ktsτnom (4.25) 

where Kt and Kts are theoretical stress concentration factors. These factors can be found in many 

books, e.g., [7], [2] or [4], Examples taken from [2] is given in Appendix B. It is important that 

the nominal stress (σnom or τnom) is clearly defined as seen in the graphs in Appendix B. 

The value of the stress concentration factor depends only on geometry. It is a theoretical 

factor, based on usual assumptions of elasticity. All materials do not react in the same way with 

respect to stress concentration, this is expressed through the notch sensitivity q. We define a 

new set of concentration factors termed fatigue stress concentration factors as 

Kf = 1 + q(Kt – 1) (4.26) 

Kfs = 1 + q(Kts – 1) (4.27) 

It is noted that a notch sensitivity of zero, q = 0, means that the material acts as if there is 

no stress concentration, i.e., it is insensitive to stress concentrations whereas q = 1 means that the 

material is very sensitive and will "feel” the whole stress concentration. The notch sensitivity 

can be approximated from 

 

where r is the notch radius and a is Neuber’s constant which is material dependent, i.e., it 

depends on the ultimate tensile stress of the material and on the specific material. In the Tables 

4.1-4.3 Neuber’s constant for steel and aluminium is given. 

It should be noted that the notch sensitivity depends both on material through the 

Neuber’s constant and also on the geometry through the notch radius. In the next subsection it 

is shown how we may find the material endurance level that is a material parameter. The 

question is now if the notch sensitivity should be put on the endurance level because it depends 

on the material or if the notch sensitivity should be put on the stress since it depends on the 

geometry. In the present book (as most others) the notch sensitivity is put on the stress, but this 

means that the stresses calculated from 

σ = K fσnom (4.29) 

τ = Kfsτnom (4.30) 

are the theoretical values since it describes both the rise in the stress due to geometric changes 

and also the material sensitivity to these. 

Table 4.1: Neuber’s constant for steel (after [4]) 

σut [MPa] 345 379 414 483 552 621 689 758 



 

 
0.655 0.595 0.544 0.469 0.403 0.353 0.312 0.277 

 
827 896 965 1103 1241 1379 1517 1655 

 
0.247 0.222 0.197 0.156 0.121 0.091 0.066 0.045 
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Table 4.2: Neuber’s constant for hardened aluminium (after [4]) 

σut [MPa] 103 138 207 276 345 414 483 552 

 
2.268 1.915 1.401 1.104 0.937 0.816 0.726 0.660 

Table 4.3: Neuber’s constant for annealed aluminium (after [4]) 

σut [MPa] 69 103 138 172 207 241 276 310 

 
2.520 1.719 1.331 1.094 0.907 0.766 0.635 0.559 

4.5.2 S-N curve or Wohler curve 

With the stresses known we must find the material data that control fatigue. The area of fatigue 

is based highly on experiments. A common experiment is a rotating shaft loaded with a 

transverse constant load, this leads to a fully reversed loading condition 

σm = 0 and σa ≠ 0 (4.31) 

By experiments a S-N curve is found (S for stress and N for number of loading cycles). A 

typical example is shown in Figure 4.5. 

 

[billedtekst start]Figure 4.5: Schematic S-N curve or Wohler curve for steel, showing the 

ultimate tensile stress σut and the endurance stress σe.[billedtekst slut] 

The curve in Figure 4.5 is for steel. It gives the endurance stress for a specific number of 

cycles. An important point here is that for steel we have an endurance limit σe. i.e., a stress level 

at which no fatigue is possible independent on the number of cycles. This is not the case for e.g. 

aluminium where no lower limit exists. Therefore, aluminium cannot be designed to prevent 

fatigue failure. The S-N curve is a curve-fit to experiments and so it is made with a 50% failure 

likelihood, i.e., 50% of the experiments will lie below and 50% above. The uncertainty with 

respect to the S-N curve is so large that different researchers do not agree on the stress axes 



 

being a logarithmic scale or a linear scale. 

The endurance limit is found from numerous experiments and can be found in books, 

see e.g. [2]. Alternatively, the producers of the steel will supply these values. As indicated the S-

N curve and consequently 
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the endurance limit is found by experiments with rotational bending of shafts. The experiments 

are performed under certain constraints. 

• Loading condition of shaft 

• Size of shaft 

• Surface of shaft 

• Temperature 

A specific endurance level for a machine element should incorporate these items and 

also the needed level of reliability, remembering that the S-N curve is made for 50% reliability. 

4.5.3 Estimation of endurance level 

If an experimental or manufacturer given endurance level cannot be found we may estimate the 

endurance level as shown in [4] or [8]. The estimate for steel is shown below (taken from [4]). 

An uncorrected endurance level for steel is 

 

The corrected (with respect to the specific machine element) endurance level is then 

given as 

σe= CloadCsizeCsurfCtempCreliab σ'e (4.33) 

The individual correction factors are: 

Loading effect 

bending Cload =1.0 

axial loading Cload = 0.7 

Size effect 

for d ≦ 8mm Csize = 1.0 

for 8mm ≦ d ≦ 250mm Csize = 1.189(d/mm)–0.097 

for 250mm ≦ d Csize = 0.6 

Surface effect 

Csurf = B(σut/MPa)b if Csur > 1.0, set CSurf = 1.0 

where the constants B and b are taken from the Table 4.4, and σut is expressed in MPa. 

Temperature effect 

for t ≦ 450°C Ctemp = 1.0 



 

for 450°C ≦ t ≦ 550°C Ctemp = 1 – 0.0058(t/°C – 450) 

(4.34) 

At higher elevated temperatures (50% of the material absolute melting temperature) 

creep becomes an important issue and the approach applied here is no longer valid. 
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Table 4.4: Coefficients for surface factor equation. 

Surface finish B b 

Ground 1.58 –0.085 

Machined or cold-rolled 4.51 –0.265 

Hot-rolled 57.5 –0.718 

As-forged 272 –0.995 

Reliability effect The reliability coefficient is given in Table 4.5. 

Table 4.5: Reliability factor for standard deviation of 8% of mean value. 

Reliability/ % 50 90 99 99.9 99.99 99.999 

Creliab 1.000 0.897 0.814 0.753 0.702 0.659 

All of the corrections factors and also the uncorrected value of the endurance level are 

specified for steel and should not be used for other metals, see [4] for further information. 

With the S-N curve and the endurance level we can deal with the case of zero mean 

value of stress. In the general case this is however not applicable and other methods must be 

used as discussed in next subsection. 

4.5.4 Fluctuating load 

In the general case we have 

σ m ≠ 0 and σ a ≠ 0 (4.35) 

Many different methods have been proposed based on experimental data, one of these is 

the modified Goodman diagram (modified compared to the original proposed one). This 

diagram is shown in Figure 4.6. In the figure is also shown some specific values  and . 

The maximum stress  and the minimum stress  should lie within the 

max stress line and the min stress line. 

An alternative to plotting the stress as a function of the mean stress is to plot the 

alternating stress as a function of the mean stress. This is done in Figure 4.7. Using the 

Goodman line and the yield line the working point  should lie below the fat line. 

Other proposed fatigue failure envelopes are also presented in Figure 4.7. 

Soderberg line: 



 

 

ASME elliptic expression: 
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[billedtekst start]Figure 4.6: The modified Goodman diagram,  and  specifies specific 

values.[billedtekst slut] 

Modified Goodman line (in Germany the Schmidt expression): 

 

Gerber parabola: 

 

Depending on the relation between the mean and alternating stress, different safety 

factors can be found. For the Goodman assumption we know that the safety factors ns can be 

calculated. Under the assumption that it is the Goodman line and not the yield line that is the 

limiting line, the safety factors are 
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[billedtekst start]Figure 4.7: Different fatigue models.  and  specifies specific 

values.[billedtekst slut] 

Other possibilities exist and similar equations can be found from the other failure lines. 

As for static stresses a reference stress criterion must be applied to be able to compare 

the combined fatigue stress loading to a uni-axial stress situation. To calculate the mean and 

alternating stress we have to include the fatigue stress concentration factors. If the fatigue stress 

concentration factors also should be used on the mean stress is still discussed. Following [8] and 

[4] the full fatigue stress concentration factors should be put on the mean stress if no yielding 

occurs. If yielding occurs, we may reduce the concentration factor on the mean stresses, it is 

however a conservative assumption to apply the full concentration factor. The alternating and 

mean stress are given by 

 

where 

 

where Ma and Mm is the alternating and mean values of Mmax (4.13) and Ta and Tm is the 

alternating and mean part of the torque T. We may now express the safety factor directly in 

these terms for the Goodman line, under the assumption that the ratio between the bending 

moment and the torque is constant as defined in (4.42). 

 

the same expression for the Soderberg line is found simply by replacing the ultimate stress with 



 

the yield stress (σut → σy). 
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4.6 Design for shaft deflections 

In many applications it is required that the lateral and angular deflections of a shaft should be 

kept within specified limits to ensure satisfactory operation of the elements located on the shaft. 

This is especially true for gears where even small deflections may degrade gear 

performance and cause noise and vibration. 

As a general rule of thumb the stresses in a gear shaft are satisfactorily low if the lateral 

and angular deflection is within the limits required for good gear operation and performance. 

We therefore need to calculate the maximum deflection and rotation of the shaft. In 

doing this we have to take care of two things: 

• The shaft might change diameter → A(x). I(x),K(x) 

• The shaft is short L/D < 5 

To overcome the issues it is proposed to use Castigliano’s 2nd theorem which states that 

 

i.e., the deflection ve corresponding to the external load Pe equals the derivative of the 

complementary energy with respect to the load. This also applies if the load is interchanged 

with the external moment Me, then the deflection is the rotation angle θe at the point where the 

moment acts. 

 

where θe and Me are corresponding angle and moment. 

We therefore need an expression for the complementary energy. This can be found in 

e.g. [2] for straight beams. 

 

where the forces are 

P = normal force 

V = shear force 

M = bending moment 

T = torsional moment 

material data 

E = modulus of elasticity 



 

 

v = Poisson’s ratio 

cross sectional (geometric) quantities 
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A = area 

I = moment of inertia 

K = torsional stiffness factor 

β = factor from shear stress 

all of the quantities might be a function of the position x. The β factor can be found in books and 

also in [6] and [2]. The maximum shear stress due to the shear load is 

 

where μ depend on the cross section. The shear stress from the shear force then becomes 

τ = τmaxf(y) (4.52) 

We can now define β as 

 

for a circular cross section we find that β = 10/9. The normal force P and the torsional moment T 

can be neglected in the calculation of the deflection, because these will not contribute, so we 

may simplify to 

 

For a thorough introduction to energy principles the reader is referred to [6], 

4.7 Design for critical shaft speeds 

All physical systems that are elastic have eigenfrequencies, i.e., frequencies at which the 

structure can vibrate without force input (assuming zero damping), and the amplitude of 

vibration is not limited. These vibrations are termed free vibrations. 

In the real application the amplitude of vibration is reduced and free vibration will 

eventually be removed because of damping. To illustrate a simple ID system a mass spring 

system is shown in Figure 4.8. 

It can be shown that this ID system has one eigenfrequency given by 

 

where k is the stiffness of the spring and m is the mass. 

When a system is loaded with external forces at specific frequencies we have the 

possibility of resonance, when the forcing frequency becomes close to or identical to the 

eigenfrequency. This shall always be avoided because it leads to large vibrations and resulting 

stresses. 



 

The main point is that a forcing frequency should be as far away from eigenfrequencies 

as possible. In continuous structures we do not have a single eigenfrequency, but infinitely 

many. Eigenfrequencies 
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[billedtekst start]Figure 4.8: Simple ID mass spring system.[billedtekst slut] 

can be calculated using a FE-program, but here a simple analytical estimate is given. The 

presented method is Dunkerleys method and no background information is given - the reader is 

referred to books on vibration. The eigenfrequency found is the lowest one relating to 

transverse vibration. 

First we need the lowest eigenfrequencies of the shaft without added hubs. For the 

simple straight shaft in Figure 4.9 we have 

 

 

[billedtekst start]Figure 4.9: Simply supported straight beam (shaft).[billedtekst slut] 

Dunkerleys method gives an estimate for the lowest eigenfrequency. The estimate is given by 

 

where wi is the eigenfrequency, if we only add hub number i and neglect the mass of the shaft. 

To find these frequencies the stiffness of the beam at the position of the hub is found and then 

the frequency is given by this stiffness and the mass of the hub using (4.55). 

It is important to note that Dunkerleys method is an estimate and it gives a lower 

estimate. In real structures not only eigenfrequencies related to transverse vibration exist. A full 

calculation of the eigenfrequency spectrum of the system might be needed in order to ensure 

that none of the external loadings have frequencies close to the eigenfrequencies of the system. 
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4.8 Suggested design procedure, based on shaft yielding 

1. Determine the shaft rotational speed, and power or torque to be transmitted by the shaft. 

2. Determine the power transmission elements to be mounted on the shaft, their 

dimensions, and locations. 

3. Specify the locations of bearings to support the shaft. 

4. Determine the forces and torques exerted on the shaft. 

5. Determine the reactions required at the bearings to support the shaft. 

6. Produce Shear Force Diagrams, Bending Moment Diagrams, and Torque Diagrams for 

the shaft. 

7. Identify critical points on the shaft, experiencing the largest stresses (due to bending, 

torsion, and stress concentrations). 

8. Determine the required diameter at different sections of the shaft, based upon stresses at 

the critical points. 

4.9 Nomenclature 

a mm Neuber’s constant 

d mm Shaft diameter 

k N/mm Stiffness 

m kg Mass 

n – Number of cycles 

ns – Safety factor 

{s} mm General geometric vector in 3D 

q – Notch sensitivity 

t °C Temperature 

ve mm Deflection due to external load 

A mm2 Cross sectional area 

c – Correction constants for endurance limit 



 

E N/mm2 Modulus of elasticity 

{F} N General force vector in 3D 

G N/mm2 Shear modulus 

I m4 Cross sectional moment of inertia 

Iu mm4 Cross sectional moment of inertia 

Iz mm4 Cross sectional moment of inertia 

Ip mm4 Cross sectional polar moment of inertia 

K mm4 Cross sectional torsional stiffness factor 

Kt – Theoretical stress concentration factor 

Kts – Theoretical shear stress concentration factor 

Kf – fatigue stress concentration factor 

Kfs – fatigue shear stress concentration factor 

L mm Length of beam 

M Nmm Bending moment 

Ma Nmm Amplitude bending moment 

Me Nmm External bending moment 

Mm Nmm Mean bending moment 

{M} Nmm General moment vector in 3D 
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p N Axial load 

Pe N External load 

T Nmm Torque (torsional moment) 

Ta Nmm Amplitude torque (torsional moment) 

Tm Nmm Mean torque (torsional moment) 

V N Shear force 

Uc Nmm Complementary energy 

Г – Slenderness ratio 

Є – Strain 

w rad/s Eigenfrequency 

ρ kg/mm3 Density 

ρ u mm Radius of curvature 

ρz mm Radius of curvature 

σ0 N/mm2 Amplitude stress 

σe N/mm2 Endurance limit 

 N/mm2 Uncorrected endurance limit 

σm N/mm2 Mean stress 

σnom N/mm2 Nominal stress 

ΣREF N/mm2 von Mises reference stress 

τnom N/mm2 Yield stress 

ΣUT N/mm2 Ultimate tensile stress 

τnom N/mm2 Nominal shear stress 



 

θe rad Rotation due to external load 

4.10 References 

[1] B. J. Hamrock, B. Jacobson, and S. R. Schmid. Fundamentals of machine elements. McGraw 

Hill, 1999. 

[2] G. Hedner. Formelsamling i Hallfasthetslara. KTH, Stockholm, 1986. 

[3] P. E. Nikravesh. Computer-Aided Analysis of Mechanical Systems. Prentice-Hall 

International, Inc., Englewood Cliffs, Nj 07632, 1988. 

[4] R. L. Norton. Machine design, an integrated approach, fifth edition. Prentice-Hall Inc., Upper 

Saddle River, N.J. 07458, 2014. 

[5] N. L. Pedersen. Analysis and synthesis of complex mechanical systems. Solid Mechanics, 

DTU, 1998. Ph.D. thesis. 

[6] P. Pedersen. Elasticity - Anisotropy - Laminates with Matrix Formulation, Finite Element and 

Index to Matrices. Solid Mechanics, DTU, 1998. 

[7] R. E. Peterson. Stress concentration design factors. John Wiley & Son, Inc., New York, USA, 

1953. 

[8] J. E. Shigley and C. R. Michke. Mechanical Engineering Design 7th ed. McGraw Hill, 

Singapore, 2004. 



 

Side 99 

Chapter 5 Shaft-hub Connections 

5.1 Introduction 

Power transmission elements such as gears, pulleys and sprockets should be mounted on shafts 

securely locating them in a circumferential as well as an axial position, and making them able to 

transmit torque between the transmission element and the shaft. 

The various types of shaft-hub connections have different characteristics such as 

• different ability to transfer torque 

• difference in easiness of assembly (and/or disassembly) 

• different level of running accuracy 

Because of difference in the way of functioning we distinguish between shaft-hub 

connections based on the principle of "positive connections", where the power is transmitted 

through shape or geometry of the elements, and shaft-hub connections based on "transmission 

by friction" where the transmitted power depends on the frictional forces between mating 

surfaces. 

5.2 Positive connections 

5.2.1 Pinned and taper-pinned joints 

 

[billedtekst start]Figure 5.1: An often used pin connection is a connection with a split tubular 

spring pin (Available in light, medium and heavy duty series).[billedtekst slut] 
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The purpose of the pin is to prevent rotational motion between shaft and the element 

mounted when a torque is transmitted. Pins are suitable for transmitting low to medium torque. 

They are cheap and easy to assemble and disassemble. Pins are common standardized elements. 

There are a great variety of pins. 

In some designs where the pin is going through the shaft, the pin is seen as a safety 

component. If a dramatic increase in the torque should happen, the pin will shear before other 

more expensive machine elements fail. It is then of great importance to choose a pin made of 

significantly weaker material than the hub and shaft, often from mild steel. 

5.2.2 Parallel keys and Woodruff Keys 

 

[billedtekst start]Figure 5.2: Two types of ordinary parallel keys and a Woodruff 

key.[billedtekst slut] 

Keys are only suitable for torsional loads in one direction. The dimension criterion for keys is 

usually the pressure load on the key sides. Although the pressure distribution along the key is 

very uneven, the normal calculation method is based on even pressure load distribution as 

indicated previously. In fact there are at least two parameters to have in mind. Firstly, because 

of the torsional deflection of the shaft the pressure load is highest at the end of the key, where 

the torsional loads comes in. In practice it is useless to design keys with carrying length of more 

than 1.5 - 2 times the shaft diameter. Secondly, the pressure varies over the key height. 

Applying a pressure distribution that will prevent the key from tilting is difficult to sketch. The 

allowable pressure value is dependent of the material combination of shaft and hub. In [5] the 

following values are seen: Cast iron hub: pallowable ≤ 50N/mm2 for Leff = 1.6d to 2.1 d. Steel hub: 

pallowabie ≤ 90N/mm2 for Leff = 1.1 d to 1.4d. In special cases p = 200N/mm2 is allowable for infrequent 

high extra loads. The key itself is normally made of "key-steel" which is a medium strength steel 

(C 45 K). 

5.2.3 Splined joints 

To lower the pressure load on the key sides it is possible to use more than one key on the 

circumference, but in practice it is very difficult to obtain even load share between the keys. 



 

Instead multiple "keys" can be cut directly in the shaft and are then called splines. The key ways 

in the hub are then manufactured by reaming. See Figures 5.3 and 5.4. 

5.2.4 Prestressed shaft-hub connections 

When dynamic loads are applied to the shaft-hub connection and especially dynamic loads in 

both directions, it is necessary to use prestressed connection. See Figure 5.5. 
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[billedtekst start]Figure 5.3: Straight-sided splines are available in light, medium and heavy 

series.[billedtekst slut] 

 

[billedtekst start]Figure 5.4: Involute splines. Centered on bottom (left), top (right) or 

flank.[billedtekst slut] 

 

[billedtekst start]Figure 5.5: Prestressed connection with Gib-head key. Normally not to be 

recommended.[billedtekst slut] 

5.2.5 Failure of positive connections 

The positive connection can all in general fail in two modes 

• Shear failure 

• Bearing failure 

Shear failure is when e.g. a key is loaded such that the key is sheared across its width 
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where F is the applied load and Asflcar is the shear area being cut. For a key this is equal to the 

length times the width. The force on the key can be found from the quotient of the shaft torque 

and shaft radius. If the shaft torque is constant with time the force will also be and the safety 

factor can be found by comparing the shear force to the yield stress 

 

If the torque is varying with time, then a fatigue failure of the key is possible. In this case 

we have to use methods as shown in Chapter 4 e.g. the Goodman diagram. 

The second mode of failure is bearing failure. We may define an average bearing stress 

by 

 

where F is the applied load and Abearing is the bearing area, i.e., e.g. the area of contact between 

the key side and the shaft or the hub. For a square key this equals half the height of the key 

times the length. A Woodruff key has a different bearing area in the hub than in the shaft. The 

hub’s Woodruff bearing area is smaller and will typically fail first. 

The safety factor is in these cases given by 

 

If one key is insufficient to carry the load splined joints can be used. It is difficult to 

estimate the number of "teeth" that is in contact and howhard they shear the load from the 

torque. A usual assumption is that only 75%of the "teeth" are in contact and then calculate the 

strength of the connection using this assumption. 

5.3 Connection with force (Transmission by friction) 

5.3.1 Cone interference fit 

In a conical shaft hub connection the pressure is established by pressing the conical shaft 

geometry into the conical hole in the hub. When assembled, it almost behaves as a press or 

shrink fit (see later in this chapter). The force required can in some cases be obtained by the bolt 

and nut connection as seen on Figure 5.6. Very often the necessary axial force has to be applied 

by a hydraulic piston. Afterwards the conical parts can be held in place by a nut. 

The friction force is 

Ff ≦ ≤μs Fn if fixed 

Ff= μd Fn if sliding 

where Fn is the normal load, μs is the static coefficient of friction and μd is the dynamic 

coefficient of friction. The surface area of the frustum of contact is 
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[billedtekst start]Figure 5.6: A conical shaft-hub connection.[billedtekst slut] 

where d1 and d2 are the two diameters of the conical shaft at the start and end of contact with the 

hub, L is the length of contact and dm is the mean value of d1 and d2. By force equilibrium 

(assuming sliding) we have 

 

from which the force Fa can be found 

 

where the length Lf is defined in Figure 5.6. If the angle αc is small then cos(αc/2) ≈ and we may 

use the approximation that L = Lf which leads to 

 

this approximation can be found in many books. In (5.6) and (5.7) we used the assumption of 

sliding and therefore μd if no sliding then μd should be interchanged with μs and then (5.6) and 

(5.7) gives the limiting load at which sliding begins. 

The torque limit is 

 

for the approximation the assumption d1 ≈ d2 ≈ dm is used. 

5.3.2 Interference fit with spacers 

When easy assembly and disassembly have a high priority combined with medium torque 

transmission capabilities special spacers have been developed. One of these is the ringfeder-



 

element as shown in Figure 5.8. 
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[billedtekst start]Figure 5.7: An example of cone clamping elements with radially cut through 

tapered rings. Self-centering. Ringspann Gmbh. KTR Kupplungstechnik Gmbh.[billedtekst slut] 

 

[billedtekst start]Figure 5.8: Shaft hub connection with tapered straining rings. Not self-

centering. Ringspann Gmbh.[billedtekst slut] 

5.3.3 Interference fit (press and shrink fits) 

In a press or shrink fit the pressure between shaft and hub is caused by interference. The 

pressure increases the diameter of the hole in the hub and reduces the diameter of the shaft. 

Chapter 1 describes the tolerances on shaft and hub that result in specific fits (intervals). Figure 

5.9 left shows an axially loaded shrink fit. The right side picture shows a normal torsionally 

loaded shaft-hub connection. In the following we will describe the stresses and strains that 

appear due to the fit. 
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[billedtekst start]Figure 5.9: A friction based connection. (W = friction force).[billedtekst slut] 

Because of symmetry it is practical to use cylindrical coordinates (r, θ, z), where z is in 

the axial direction. Assuming axial symmetry, i.e., symmetric with respect to the z-axis the force 

equilibrium becomes independent of θ. 

 

[billedtekst start]Figure 5.10: Free body diagram of infinitesimal piece of shaft or hub in 

cylindrical coordinates. Assuming rotational symmetry.[billedtekst slut] 

The cut-out in Figure 5.10 shows the stresses under the axial symmetry assumption, 

which also allow for radial body force fr. Force equilibrium in the radial direction gives 

 

removing higher order terms we have 

 

Because of symmetric with respect to the z-axis the corresponding strains are (can be 

found in e.g. [6]) 
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where vr is the displacement in the radial direction. 

On the sides of the hub we know that there is plane stress and in the center of the hub 

we must have plane strain due to symmetry. In the following it is assumed that the thickness of 

the hub is such that we may assume plane stress throughout the hub, i.e., 

σZZ = 0 (5.14) 

The constitutive equations (see [6]) under the assumption of plane stress are 

 

where E is the modulus of elasticity and v is Poisson’s ratio. Using (5.11) and (5.12) in (5.19) and 

(5.20) yields the differential equations 

 

Using (5.22) and (5.23) in (5.10) yields (after some manipulations) 

 

The differential equation (5.24) is Euler’s differential equation. If we assume that the 

radial body force is given by 

fr = ρrw2 (5.25) 

where ρ is the density and ω is angular speed, then the solution to (5.24) is 

 

where c1 and c2 are constants that are to be determined from the boundary conditions. Using 

(5.26) we may express the stress and strain as 
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where the new constants c3 and c4 are related to c1 and c2 through 

 

Expressing the radial displacement in c3 and c4 gives 

 

We now have all the needed equations ready to express the relation between the 

interference and the corresponding pressure in an interference or press fit. First we make the 

assumption that fr = 0 and let the shaft be a tube, as shown in Figure 5.11. In the figure the inner 

radius ra is shown (in case of a solid shaft we use ra = 0), rb, is the outer radius of the hub and rf is 

the fit radius. 

 

[billedtekst start]Figure 5.11: Definition of inner, outer and fit radii.[billedtekst slut] 

Outer part (hub) First we look at the hub. The boundary condition is that the pressure is zero at 

the outer radius of the hub and at the fit radius we have the fit pressure pf. This gives 
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that yields 

 

The radial deformation at the fit radius of the hub is 

 

By inserting the values of c3 and c4 

 

Inner part (shaft) The boundary condition is that the pressure is zero at the inner radius of the 

shaft and at the fit radius we have the fit pressure pf. This gives 

 

that yields 

 

The radial deformation at the fit radius of the shaft is 

 

By inserting the values of c3 and c4 
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[billedtekst start]Figure 5.12: Cut through shaft and hub before assembly.[billedtekst slut] 

 

In Figure 5.12 we show a cut through the shaft and the hub before assembly. 

The radius before assembly of the inner radius of the hub is rh and the outer radius of the 

shaft before assembly is rs. After assembly it is known that both of these radii must be displaced 

to the fit radius rf, this yields 

rh + vrh = rf rs + vrs = rf ⇒ 

rs – rh = vrh – vrs (5.48) 

The radial and diametral fit is defined as 

δr = rs–rh = vrh – vrs (5.49) 

δd = 2δr (5.50) 

the diametral fit corresponds to the fit specified in Chapter 1 and can be given as 

 

The radial volume force is neglected in the calculations that result in (5.51). The reason 

for including fr is the possibility to include radial forces due to the rotational speed. In this case 

we can use the radial force as defined in (5.25). In many cases with low angular speed the 

influence from this term can be neglected. For completeness the diametral fit including the 

influence from the rotational speed is given. The calculations are identical to the ones that lead 

to (5.51). 

 

it is noted that in the case of w = 0 then (5.52) becomes identical to (5.51). It should also be noted 

that the rotational speed will reduce the pressure in the fit, i.e., if a given fit pressure is needed, 

then we must for w ≠ 0 specify a higher fit δd to achieve this. 
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Assembly force and transmitted torque 

For a press fit the assembly force, Fa, depends on the thickness of the outer member, the 

difference in diameters of the shaft and hub and of the coefficient of friction. The maximum 

shear stress is 

 

where µs is the static coefficient of friction. The maximal torque that can be transmitted is 

 

where l is the length of the contact zone between the shaft and hub. 

Shrink fits 

To assemble shaft and hub with a shrink fit a temperature difference between shaft and hub 

must be established. The easiest way of doing this is by heating the hub. However, it is 

important to ensure that a temperature increase of the hub will not harm its heat treatment. 

Gears are especially sensitive to this. 

Assuming that there is a linear relationship between thermal strain and temperature, the 

following expression applies 

 

Where α is the thermal expansion coefficient. The temperature difference ∆tm may of course be 

established also by cooling the shaft or by a combination of heating the hub and cooling the 

shaft. 

Applying the temperature difference calculated from (5.55) will exactly allow for 

assembly. A small decrease in this temperature difference (e.g. by the two parts touching each 

other) will however make assembly impossible. It is therefore typical to add a handling 

deflection to the fit. The size of this handling deflection is typical 

 

Smoothing out of surfaces 

Especially when assembling shaft and hub by pressing it is important to take the associated 

smoothing out of surfaces into account. Due to the sliding of the surfaces on each other, the 

surfaces smoothen out and the interference is reduced. The reduction is based on experience 

and for press fits it amounts to 

 

where Ra is the arithmetic mean roughness value (DIN 4768, DIN 4662, ISO 4287/1). For shrink 

fits the reduction is smaller and can be estimated to 



 

 

5.4 Design modification/optimization 

The design of many shaft hub connections, e.g. key and spline designs, is defined in different 

standard. The reason being that then component form different manufacturing companies can 

be used together. The designs are often restricted to straight lines and the circular shape. From 

shape optimization with 
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respect to minimizing stress concentrations it is known that the circular shape is seldom the 

optimal choice and therefore there is a potential for improvement. The different standards 

regulating the designs are based on many years of experience, so in most cases the designs are 

not very far from an optimal one still although based on the circular shape. 

Keyway design 

 

[billedtekst start]Figure 5.13: Cross section of prismatic part of parallel keyway. The relative 

dimensions corresponds to a 100mm shaft diameter according to [2], (t = 10mm, b = 28mm, 

0.4mm ≦ rr≦ 0.6mm).[billedtekst slut] 

 

For the keyway connection one of the commonly used standards is DIN 6885, [2], In 5.13 

a cross section of the prismatic part of a keyway is shown. The standard specifies a range for the 

fillet radius in the key way. In Figure 5.14 the theoretical shear stress concentration factor, Kts 

defines as 

 

is shown for the prismatic part of a keyway in pure torsion. The results are taken from [7]. 

In [7] a curve fitted result for the stress concentration factor is also given. 

 

where d is the shaft diameter, t the depth of the keyway, see Figure 5.15, and rr is the fillet 

radius. With the two curve fits an easy stress concentration factor estimation for the keyways 

prismatic part in pure torsion for designs that follows DIN 6885 are given. In the case of a 

specific design that does not follow the standard DIN 6885 the full numerical simulation 

specified in e.g. [7] is needed. 

An improved design is suggested in [7]. The parametrization chosen here is to use the 

super ellipse due to the simple parametrization and due to previous results obtained with this 

shape in relation to stress concentrations. The design domain is shown in Figure 5.15, where the 



 

elliptical shape can be seen for the fillet. 

The super ellipse (with super elliptical power η) is in parametric form given by 
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[billedtekst start]Figure 5.14: The stress concentration factor for the prismatic part of a keyway 

in pure torsion as a function of the diameter. The different design variables are controlled by 

DIN 6885. The point corresponds to numerical simulations, these are connected by straight 

lines.[7][billedtekst slut] 

 

 

[billedtekst start]Figure 5.15: The design domain: half a keyway where the fillet is a super 

ellipse with semi-major axes B1 and B2.[billedtekst slut] 

The new design proposal is 

• L1 =minimum allowable shoulder length according to DIN 6885 
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• L2 = 0 

• η=2 

• b DIN 6885 standard 

• t = 1.4L1 for 6mm ≦ d ≦ 38mm and t = 1.5L1 for 38mm ≦ d ≦ 500mm 

The keyway design is according to Figure 5.15 fully controlled by five design 

parameters, width b, depth t, length L1 and L2and super ellipse power η. 

The Kts factors for the diameter range 6mm ≦ d ≦ 500mm is shown in Figure 5.16 

together with the minimum obtainable stress concentration using the standard. It can be seen 

that for most of the diameter range the Kts factor is almost constant. The design is best for the 

larger diameter range but always better than that given by the standard. The smallest difference 

is achieved for d = 8mm where the minimum stress concentration specified by DIN 6885 is Kts = 

2.65 where the new keyway design has Kts = 2.41, i.e. a 9% reduction in the stress. For most of 

the diameter range the improvement is much larger with a reduction in the maximum stress of 

about 35%. 

 

[billedtekst start]Figure 5.16: The stress concentration factor for the prismatic part of a key way 

in pure torsion as a function of the diameter. The top curve is for the DIN 6885 design with the 

maximum allowable fillet radius. The bottom curve is for the new proposed keyway design. 

The point corresponds to numerical simulations, these are connected by straight lines. 

[7][billedtekst slut] 

5.4.1 Spline design 

Splines in shafts are found in many different types and designs. The possibilities for design 

modifications are here described relative to straight sided splines as it is found in [8], 

The design of straight-sided splines is regulated by standards. Here we refer to the 

international ISO standard (DIN ISO 14) or/and the German DIN 5464 norm. According to these 



 

standards the splined shafts fall in three series; light, middle and heavy, depending on the teeth 

height. The geometric definitions are given in Figure 5.17 

The stress concentration factors found are shown in Figure 5.18, the results are taken 

from [8], and includes the outdated standards DIN 5462 and DIN 5463. It should be noted that 

the standards do not 
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[billedtekst start]Figure 5.17: The geometric definition of half a tooth. Definitions are given as 

specified in DIN 5462-5463.[billedtekst slut] 

 

define the root so the presented stress concentration factors corresponds to a lower limit, i.e. the 

largest possible rr is selected. 

 

[billedtekst start]Figure 5.18: The stress concentration factor of a splined shaft as a function of 

the outer diameter d2 The nominal stress is defined relative to the outer diameter, i.e. 

[billedtekst slut] 

If the nominal stress is defined relative to the inner diameter d1 instead of relative to the 

outer diameter d2 the stress concentration has a small and more intuitive value. This is because 

the shear stress will never be able to utilize fully the spline teeth. It will neither be possible to 

reach a value of 1 since there is material missing compared to a shaft with the outer diameter. 

Theoretically it is known that the stress concentration factor for a shaft with a semicircular cut 

in the limit is 2. It is therefore not surprising that the stress concentration defined relative to the 

inner diameter gives similar values. The stress concentration defined with the nominal stress 

defined relative to the inner diameter is shown in Figure 5.19. 
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[billedtekst start]Figure 5.19: The stress concentration factor of a splined shaft as a function of 

the outer diameter d2. The nominal stress is defined relative to the inner diameter, i.e.  

Also shown are the linear curve fits to the results. [8][billedtekst slut] 

From Figure 5.19 it is noticed that the values are relatively constant facilitating a simple 

linear curve fit. Linear curve fits to the results are also plotted in the figure. Specific expressions 

are 

 

 

[billedtekst start]Figure 5.20: Cross sectional design of optimized splines with the resulting 

stress level iso lines. The iso lines indicate how constant the stress is along the design boundary. 

Please note that the two splines are scaled to the same size. a) The optimized design for DIN 

5362 8×56×62. b) The optimized design for DIN 5363 6× 11 × 14. [8][billedtekst slut] 
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These curve fitted results should be used with care since they are defined relative to the 

maximum allowable radius at the tooth root. There are many possibilities for design 

improvements, see [8], To exemplify Figure 5.20 show two optimized splines scaled to the same 

size, in order to see the smaller spline iso lines. The design modification is made such that the 

splines use flange centering. The improvement in the stress concentration factor compared to 

the DIN norm is 27.1% and 15.2% respectively for the two designs in Figure 5.20. 

5.5 Nomenclature 

b mm Keyway width 

d mm Shaft diameter 

d1 mm Diameter of centering shaft surface on splined shaft 

d2 mm Outer diameter of spline shaft 

df mm Fit diameter 

dm mm Cone mean diameter 

e1 mm Width of spline key 

e2 mm Fillet diameter of fillet root in spline 

e3 mm Width of shaft centering surface in spline 

fr N/mm3 Radial volume force 

l mm Length of contact zone in interference fit 

Kts  Theoretical shear stress concentration factor 

ns – Safety factor 

P N/mm2 Contact pressure 

Pf N/mm2 Contact pressure between shaft and hub 

r mm Radial coordinate 

ra mm Internal radius of shaft (if hollow) 

rb mm Outer radius of hub 



 

rf mm Fit radius 

rh mm Internal radius of hub before deformation 

rr mm Root radius 

rs mm Outer radius of shaft before deformation 

t mm Key way depth 

vr mm Radial displacement 

vrh mm Radial displacement of hub fit surface 

vrs mm Radial displacement of shaft fit surface 

A mm2 Contact area 

Abearing mm2 Bearing contact area 

A frustum mm2 Bearing contact area of frustum 

Ashear mm2 Shear area 

B1, B2 mm Semi-axes of fillet super ellipse of spline root 

E N/mm2 Modulus of elasticity 

Eh N/mm2 Modulus of elasticity of hub 

Es N/mm2 Modulus of elasticity of shaft 

F N Force 

Fa N Assembly force 

Fa,max N Maximum assembly force for press fit 

Fn N Force normal to surface 

Fr N Radial force 
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Kts – Theoretical shear stress concentration factor 

L1, L2 mm Length of key way planar surfaces 

Leff mm Active length of key, depending on the shape of the parallel key 

(straight or rounded ends) 

Lf mm Length of conical contact 

R N Resultant force 

T Nmm Torque (torsional moment) 

Ra mm Surface roughness (Arithmetic mean) 

α 1/°C Thermal expansion coefficient 

αc rad Cone angle 

δr mm Radial fit 

δd mm Diametral fit 

∆tm °C Temperature difference between shaft and hub 

η – Super elliptical power 

∊rr – Radial strain 

∊ZZ  Axial stress 

∊θθ – Circumferential strain 

µd – Dynamic coefficient of friction 

µs – Static coefficient of friction 

V – Poisson ratio 

Vh – Poisson ratio for hub 

Vs – Poisson ratio for shaft 



 

ω rad/s Angular speed 

ρ kg/mm3 Density 

ρh kg/mm3 Density of hub 

ρs kg/mm3 Density of shaft 

σrr N/mm2 Radial stress 

σθθ N/mm2 Circumferential stress 

σy N/mm2 Yield stress 

τmax N/mm2 Max shear stress 
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Chapter 6 Threaded Fasteners 

6.1 Introduction 

A bolted connection is an assembly of components fixed to each other by one or more threaded 

fasteners. The fastener transmits the static and dynamic forces acting on the components. A 

threaded fastener without a nut is called a screw. A screw is called a bolt when used together 

with a nut. 

Millions of screws and bolts are applied to mechanical design every day without being 

carefully dimensioned. However, in many applications careful calculation is needed, such as in 

cars, airplanes, cranes, steam and gas turbines etc., where mechanical reliability and human 

safety aspects are vital. 

 

[billedtekst start]Figure 6.1: Bolt and nut.[billedtekst slut] 

6.2 Characteristics of screw motion 

When tightening or loosening a bolt, a screw motion is made along the screw axis. When one 

complete turn of the screw is made, a relative axial displacement is created along the screw axis 

which corresponds to the lead ph. The pitch (or (lank pitch) p shown in Figure 6.2 is the distance 

from a point on one thread 
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to the same point on an adjacent thread. For a single threaded screw Ph = P and for a double 

threaded screw Ph = 2p. In the following only single threaded screws are considered. However, 

it is relatively simple to modify the expressions so that double or triple threaded screws can be 

analyzed. 

 

[billedtekst start]Figure 6.2: Spindle with flat thread.[billedtekst slut] 

Unfolding a helix laying on a cylinder with the radius 

 

results in an inclined straight line with the pitch angle β where 

 

6.3 Types of thread 

The thread profile is the outline of a thread seen in an axial cross section. The thread flanks are 

the parts of the thread profile that are in contact with the threaded counterpart. The thread 

flanks create an angle α called the flank angle. For ISO-metric threads the flank angle is α = π/3. 

V-Thread for fastener-type bolts. The metric ISO thread is the most commonly used in the EU. 

The profile of the bolt and nut thread can be seen in Figure 6.3. The major diameter d of the bolt 

thread is equal to the major diameter of the nut thread. This is also referred to as the nominal 

diameter. The minor diameter d3 of the bolt is used to calculate the cross-section area of the core. 

 

The groove and ridge of the thread has the same width along the axis on the pitch diameter d2 of 

the bolt and nut. 

The theoretical height h of the sharp V-profile with a pitch p, and a flank angle α = π/3 is 

seen in Figure 6.3. Referring to Figure 6.3 for metric ISO thread, the following expressions can 

be deduced 
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[billedtekst start]Figure 6.3: Metric ISO thread.[billedtekst slut] 

 

The fillet radius in the thread root 

 

The flank overlap h1 is also referred to as the depth of thread engagement. The fillet 

radius rr in the thread root of the boll is specified in the standards. The stressed cross-section of 

the screw is approximated by 

 

As is the reference cross-section for strength calculations. In Tables 6.1 and 6.2 are listed 

the nominal diameter d, pitch p, diameter d3 and stressed cross-section As for a selected series of 

metric (SO coarse and fine pitch threads. 

Flat thread. Flat thread for Translation-Type screws produces less friction between nut and bolt 

than the V-thread. For nominal profiles of the nut and bolt of a metric thread, with a clearance 

in the major and minor diameter but without flank clearance can be seen in Figure 6.4. The 

thread is side fitting (as the ISO metric thread) and because of the small flank angle it should 

therefore be loaded only by axial forces. Table 6.3 contains nominal sizes for trapezoidal 

threads. 
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Table 6.1: Extract of metric ISO threads - coarse series. 

Nom. dia. 

d 

mm 

Pitch 

p 

mm 

Pitch diam. 

d2 

mm 

Core diam. 

d3 

mm 

Stressed section 

As 

mm2 

4 0.7 3.545 3.141 8.78 

5 0.8 4.480 4.019 14.2 

6 1.0 5.350 4.773 20.1 

8 1.25 7.188 6.466 36.6 

10 1.5 9.026 8.160 58.0 

12 1.75 10.863 9.853 84.3 

16 2 14.701 13.546 157 

20 2.5 18.376 16.933 245 

24 3 22.051 20.319 353 

30 3.5 27.727 25.706 561 

Table 6.2: Extract of metric ISO threads - fine series. 

Nominal dia. 

d 

mm 

Pitch 

P 

mm 

Pitch diameter 

d2 

mm 

Core diameter 

d3 

mm 

Stressed section 

As 

mm2 

8 1 7.35 6.773 39.2 

12 1.25 11.188 10.466 92.1 

16 1.5 15.026 14.160 167 

20 1.5 19.026 18.160 272 

24 2 22.701 21.546 384 

30 2 28.701 27.546 621 
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[billedtekst start]Figure 6.4: Translation type thread (ISO-profile).[billedtekst slut] 

 

Table 6.3: Extract of metric ISO trapezoidal threads 

Nominal dia. 

d 

mm 

Pitch 

p 

mm 

Flank dia. 

d2 

mm 

Root dia. 

d3 

mm 

10 2 9.0 7.5 

12 3 10.5 8.5 

16 4 14.0 11.5 

20 4 18.0 15.5 

24 5 21.5 18.5 

28 5 25.5 22.5 

32 6 27.0 23.0 

36 6 29.0 25.0 

Parametric representation of the thread surface 

Any curve on a thread surface with constant distance to the bolt axis is a helix, and a helix has a 

simple mathematical form. The thread surface can therefore also be expressed in a rather simple 



 

parametric form. 

A 3D curve can generally be expressed in parametric form as 

{c1(u)} = γx(u){i} +γy(u){j} + γz(u){k} (6.10) 

where {i}, {j} and {k} are the unit vectors along the x, y and z coordinate axes respectively. The 

independent variable u describes the position along the curve. 

If we assume that the bolt axis is aligned with the z axis and look at the thread in the x,z 

plane it is a straight line that can be represented by 

 

with a further assumption that the bolt is rotated such that the surface of the thread includes the 

point {d2/2,0,0}T. If we rotate this curve around the z axis we find the surface 
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i.e. v is a second independent variable. The thread surface is formed when the rotation of the 

thread is accompanied by a translation, this translation is controlled by the pitch, p, and 

therefore the surface of the thread can be given as 

 

One of the features of having the thread surface in parametric form is that we can find the 

normal, {N}, to the surface in any point of the surface by the vectorial cross product 

 

We find 

 

For the special case u = 0 and v = 0 we have 

 

6.4 Types of bolts and nuts 

Bolts. Figure 6.5 shows basic layouts of bolted connections and figure 6.6 shows three examples 

of layouts of bolted connections. The bolts in Figure 6.6 differ in the geometry of head, shank 

and end. The head form is defined by the method of driving, hexagonal head, hexagon socket 

head, slotted head and crosshead. The end shape is determined, among other things, by the 

method of manufacture or type of assembly. 

The shank form and diameter differ depending on application and/or manufacturing 

method. Special bolts have shanks with pilot surface for exact alignment of connected parts. On 

common mass produced bolts the thread is rolled into the shank which implies that the shank 

diameter is approximately equal to the thread pitch diameter. For classical bolts the shank 

diameter equals the nominal thread diameter. 

Nuts. In mechanical engineering hexagon nuts are the most frequently used. Cap nuts, see 

Figure 6.7(a), provide protection of the thread. Special forms of nut, such as nuts with grooves, 

see Figure 6.7(b), or capstan nuts, see Figure 6.7(f), are used to provide axial location of hubs 

and rings on shafts or transmit axial force and must be tightened with a special spanner. 

Knurled nuts, slotted round nuts or ring nuts, see Figure 6.7(c), can be considered for low initial 

stresses, in sheet metal structures hexagon weld nuts, see Figure 6.7(e), may be fastened to the 

base material by spot welding. Hexagon nuts with centering shoulder, see Figure 6.7(g), and 



 

capped nuts, see Figure 6.7(h), are used together with screws with reduced shanks. 
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[billedtekst start]Figure 6.5: Basic forms of bolted or screwed connections.[billedtekst slut] 

 

[billedtekst start]Figure 6.6: Various forms of bolted connections, a) Hexagon socket head 

screw in blind threaded hole, b) Hexagon head screw in through-threaded hole, c) Bolt and 

nut.[billedtekst slut] 

Washers. These must be used under bolts and nuts if the base material has a tendency to set or 

would be over stressed. In the case of u-beams and I-beams special washers, with non-parallel 

surfaces must be used to allow for the slope of surfaces. Numerous washers with special surface 

geometries are claimed to secure the nut or protect the plate surfaces. In general these washers 

have no proven positive effect and they should be avoided. 

6.5 Material specification for bolts and nuts 

Bolt materials are identified according to property class. The designation for each property class 

is a real number, for example: 5.6, 6.8, 8.8, 9.8, 10.9 or 12.9. The digits before the decimal point is 

equal to a hundredth of the nominal tensile strength σut in N/mm2. The digits after the decimal 

point indicates 10 times the ratio of the nominal yield stress σy or σ0.2 to the nominal tensile 

strength σut, i.e. for a class 5.6 we have 
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[billedtekst start]Figure 6.7: Different types of standardized nuts.[billedtekst slut] 

σut = 5 100N/mm2 = 500MPa 

 

Nuts with specified proof load stresses are designated by a property class between 4 and 

12. The designation number is equal to a hundredth of the minimum tensile strength of a bolt in 

N/mm2, which can be loaded up to the minimum yield strength, when used together with the 

nut. To fully utilize the strength of a 8.8 screw it should be paired with a nut of quality 8 or 

higher. 

The length of the contact between the thread of the bolt/screw and the counter part 

being a nut or a blind hole is important. For standard nuts the height is given, if blind holes are 

used instead of a nut the minimum thread depths for selected cases can be found in Table 6.4. 

6.6 Force and torque to preload a bolt 

To determine the torque required to tighten or loose a bolted connection, it is required to study 

the forces acting on the thread. These forces depend on the friction coefficient, the thread 

geometry and the external load. The coefficient of friction is µ, if it is the static or the dynamic 

friction coefficient that should be used depends on the tightening process. In Figure 6.8 the 

forces on the thread is shown for the tightening and loosening case. 

In Figure 6.8 we have used Fn to indicate the size of the normal load and  is the 

projection of this force onto the plane illustrated. The size of  depend on the flank angle α 



 

and the pitch angle β. In 
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Table 6.4: Minimum thread depths in blind hole threads in nut material [13]. 

Bolt class 

Thread fineness d/p 

8.8 10.9 

< 9 ≥ 9 ≥ 9 

Al-alloy 1.1d 1 4d  

GG25 1.0 d 1.25 d 14 d 

S235, St37, C15M 1.0d 1.25 d 14d 

E295, St50, C35M 0.9 d l.0d 1.2d 

Steel with σut > 800N/mm2 0.8 d 0.9d 1.0d 

 

[billedtekst start]Figure 6.8: Forces acting on thread in a plane that has the normal of the plane 

perpendicular to the bolt axis.[billedtekst slut] 

 

Figure 6.9 a normal cut trough Figure 6.8 is shown. We need to establish the angle θ, in Figure 

6.10 the relationship among the angles are shown. 

The angle is therefore given by 

 

 



 

[billedtekst start]Figure 6.9: A normal cut trough the free body diagram in Figure 

6.8.[billedtekst slut] 

We now have that 
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Figure 6.10: Forces acting on parallelepiped. 

For the tightening case the two force equilibriums give 

Ft – µFn cos β – Fn cos θ sin β = 0 (6.20) 

– P – µFn sinβ + Fn cosθ cos β = 0 (6.21) 

which can be combined to 

 

For the loosening case we find from force equilibrium 

 

The torque necessary for tightening, Tt, and loosening, Tl is found from Ft since 

 

so therefore 
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In addition to the friction between the thread of the bolt and the nut there is also friction 

between the bearing surface of the nut and the assembled part. The frictional moment here can 

be given as rnµnP. The radius rn is given as 

 

where dw is the diameter of the washer or bolt head, dh, is the diameter of the hole and µn is the 

friction coefficient for the nut surface contact. 

The general expressions for the torques are 

The tightening torque The tightening torque Tt can be expressed as 

 

Loosening torque. The torque T1 in the thread required to loosen it is 

 

We talk about self-locking provided that the torque required for loosening is greater 

than zero, Tl > 0. Self-locking stops as soon as Tl = 0. The total torque Tl required for loosening is 

approximately equal to 0.7 to 0.9 times the tightening torque Tt for metric ISO V-threads so long 

as no vibrations reduce the effective coefficient of friction µ,. 

Preload P and tightening torque Tt have an effect on tensile and torsional stresses in the 

bolt. The nominal tensile stress σz is calculated using either the stressed cross section of the 

thread As or the cross-section of the reduced shank if smaller. The von Mises equivalent tensile 

stress σref then provides the actual stress in the material. If a 90% utilization of the material is 

considered permissible, then permissible assembly forces and the associated tightening torques 

for a specified coefficients of friction can be calculated. 

An alternative derivation of the torque can be found using the parametric description of 

the thread surface. A unit vector in the normal direction can be given as (found from (6.17)) 

 

where  With this we directly have the components of the normal force 

 

and the free body diagram for tightening and loosening are shown in Figure 6.11. The third 

component of the normal force is pointing towards the bolt axis and this can be neglected. 



 

From the two diagrams in Figure 6.11 we find 
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Figure 6.11 Forces acting on thread in a plane that has the normal of the plane perpendicular 

to the bolt axis. 

The tightening torque 

 

Loosening torque. 

 

6.7 Deflection in joints due to preload 

The forces and deflections arising in the bolt and plates after tightening are dependent on the 

effective assembly (preload) force Fp. If linear stiffness/deflection behaviour is assumed, the so 

called deflection triangle in Figure 6.12 can be drawn. 

 

[billedtekst start]Figure 6.12: Deflection triangle. Left: The load (Fb,) displacement (δb,) 

coordinate system for the bolt. Right: The load (Fm) displacement (δm) coordinate system for the 

member plates.[billedtekst slut] 

In this graphical representation the characteristic force-deflection lines for bolt and 



 

plates are combined. In Figure 6.12 the preload Fp is defined together with the preload 

displacements of the bolt δbp 
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and the member plate preload displacements δmp. In the figure the movement of the nut along 

the thread vn is also shown. Using the designations as indicated, the stiffness kb of the bolts is 

expressed as 

 

The inverse stiffness will here be termed flexibility, in the literature, see e.g. [1], this is 

also termed resilience. The flexibility fb of the bolts is 

 

The stiffness of the member plates between the bearing surfaces of the bolt head and the 

nut is 

 

and the flexibility 

 

if retained in the center. 

 

[billedtekst start]Figure 6.13: A bolt with different shaft diameters.[billedtekst slut] 

Flexibility of bolts. Bolts consist of a number of individual elements which can be readily 

substituted by imaginary cylinders of varying lengths li and cross-sections Ai, see Figure 6.13. It 

follows that the flexibility of an individual cylindrical element is 

 

where Eb is the modulus of elasticity of the bolt material. The total flexibility of the bolt fb 

becomes fb = ∑ fi. 

In the following an approximation for the individual flexibilities of parts of the bolt is 



 

given. The elastic flexibility of the bolt head is estimated as 
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where lh, = 0.5d for hexagonal head bolts and lh = 0.4d for socket head cap screws. The area An is 

given by 

 

The flexibility of the open portion of the thread is 

 

where lto is the length and A3 is the root cross-section. 

 

The flexibility of the engaged part of the thread including the nut or the tapped thread 

region is given by 

ftn – fte + fn (6.43) 

i.e., the flexibility is the sum of the flexibility of the engaged thread fte and that of the nut fn. The 

flexibility of the engaged thread is estimated as 

 

while the flexibility of the nut or tapped joint is estimated as 

 

where ltn = 0.4d for the nut and ltn = 0.33d for the tapped thread joint. The total flexibility of the 

bolt in Figure 6.13 can therefore be expressed as 

fb – fh + f1 + f2 + fto + ftn (6.46) 

the values for fh, fto and ftn are all taken from [12]. 

Flexibility of member/retained plates. Exact determination of the flexibility of plates (or more 

general: compressed members) is rather complicated and requires in most cases a FE-analysis. A 

thorough discussion of different stiffness evaluations can be found in [7]. Good approximations 

can be obtained by the models described in the following, where a rather extensive review of 

the different methods proposed in the literature is presented. The primary idea behind is to 

illustrate the large variation in the found results using the different methods. The most used 

expression is probably the latest VD1 form 2003. 

The geometry of the connection is presented in Figure 6.14 which shows a quarter of the 

bolt cross section, in the figure we show the dimensions of the bolt including a washer. In many 

analyses performed this part is neglected and further an assumption of axis symmetry is used. 

The washer can also be treated as an integrated part of the bolt. 



 

The two plate members that are assembled by the bolt are assumed to be of equal 

thickness, and of the same material, so we may, in addition to the axis symmetry model, only 

model one of the plates. Figure 6.15 shows a quarter of the plate assembly cross section, were 

dimensions are also shown. In 
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[billedtekst start]Figure 6.14: The symmetric part of a bolt including a washer.[7][billedtekst 

slut] 

Figures 6.14 and 6.15 the contact pressure distribution between the washer and the plate is 

indicated for illustrative purposes. If the FEM is used to calculate the stiffness then this contact 

pressure must be determined. 

 

[billedtekst start]Figure 6.15: The member plate for the symmetric problem.[7][billedtekst slut] 
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The determination of the member stiffness, i.e., the assembled plates, has a long history 

that dates back to [9]. The assumption behind most formulas of the stiffness is that the width, da, 

of the member is infinite or so large that there is no elastic energy in the outer part of the 

member. In [9] it was proposed that the stress in the members is uniform in two frusta 

symmetric around the symmetry line, with a top angle of 2φ given by φ = π/4, see also Figure 

6.16. This leads to member stiffness km 

 

where Em is Young’s modulus, lm is the combined length of the members, d is the nominal 

diameter of the bolt and є and η are non-dimensional factors as indicated in Figures 6.14 and 

6.15, i.e. dh = єd and dw = ηd. In many papers the clearance of the hole is set equal to zero and as 

such it is the nominal diameter of the bolt that is used in (6.47), i.e., є = 1 is used. It should 

however be the diameter of the hole that is used instead, this is the reason for including є in 

(6.47) here. The assumption that leads to (6.47) is a very simple and straightforward assumption 

but not very accurate, also it is based on an assumption that is not in static equilibrium. 

Assuming that the total prestress contact load is P and integrating over the frusta we get (see 

e.g. [10]) 

 

which can be simplified in the case of φ = π/4. 

The assumption of φ = π/4 is not appropriate as it was experimentally verified by [2] or 

[3], A more suitable assumption is to use the value φ = π/6. In [5] the stiffness is defined as 

(rearrangement to fit the definition used here) 

 

which corresponds to the same assumption as [9] but with φ = π/6 instead. In [10] it is proposed 

to use (6.48) also with φ = π/6. As an alternative to these stiffness calculations both [5] and [10] 

suggest to use the results found by [14] which is a curve fit to FE results that is given by 

km = EmєdC1eC2(єd/lm) (6.50) 

where C1 and C2 are constants that depend on the material data. The constants C1, C2 may be 

found in Table 6.5. The curve fit using an exponential function should be used with caution 

because the approximation fail drastically when єd/lm becomes large. 

In [4] other earlier expressions for the member stiffness are given together with a new 

one. The assumption by [4] is that the stress in the member can be given as 

σ(r, z) = a4r4 + a3r3 + a2r2 + a1r + a0 (6.51) 

where the coefficients a4 – a0 are functions of the z position (see Figure 6.15). It is assumed that 



 

the stress will vanish at a distance r0(z) which also is a function of z. The assumed boundary 

conditions for finding these values are 
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Table 6.5: Constants Ai and Bi for the Wileman plate stiffness formula [14]. 

Material Modulus of elasticity 

Em 

[GPa] 

Poisson’s ratio 

vm 

[–] 

C1 

[–] 

C2 

[–] 

Steel 206.8 0.291 0.78715 0.62873 

Aluminium 71.0 0.334 0.79670 0.63816 

Cast Iron 100 0.211 0.77871 0.61616 

 

Different definitions of r0(z) are given, one corresponds to a frustum 

2r0 = ηd – 2z tan(φ) (6.53) 

where the equation is rewritten to fit the definition of the z coordinate given here. The stiffness 

is then found using the unidirectional stress state, Hookes law and the displacement at a point r 

= (є + η)d/A. 

A more general expression for the stiffness is found in [13] which also specifies the 

stiffness in the case when the width of the member, da, has a limited size. The stiffness according 

to [13] is given by 

 

 

where the last formula for da≧≧ 3ηd is the one that should be compared to the previously given 

expressions for the stiffness. The stiffness expressions in (6.54) are later changed as it may be 

found in e.g. [ll] into the expression 



 

 

the three different ranges for da in (6.55) are illustrated in Figure 6.16. 
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[billedtekst start]Figure 6.16: The three different plate width situations for which separate 

definitions of the member stiffness are given.[billedtekst slut] 

 

More recently the suggestions by VDI have been changed again. The new suggestions 

can be found in [12]. This expression is simplified to the case presented here given by 

 

where da,gr and tan(φd) are given by 

 

da,gr = ηd + lm tan(φd) (6.58) 

From the equation it is seen that the [12] suggestions comply with (6.48) found in [10] 

Other expressions for the stiffness can be found in the literature. However just from the 

many expressions for the stiffness presented here it is clear that there is a large variation in the 

suggestions. This is best illustrated graphically. In Figure 6.17 we have plotted, as also done in 

[14] and [10], the dimensionless stiffness, km/(Emєd), as a function of the ratio between the 

clearance of the hole and the length of the member, єd/lm. The plot is done for the case where є = 

1.1 and η = 1.7. Unfortunately, such a plot will be highly depending on the value of η. 
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[billedtekst start]Figure 6.17: Dimensionless stiffness plots versus aspect ratio of clearance 

diameter to length of members.[7][billedtekst slut] 

In [7] an extensive study using the finite element method and the elastic energy to 

determine the stiffness of the member have resulted in new simplified equations for 

determining the stiffness. 

 

where k0 is the value of the stiffness for da = ηd and kmax is the asymptotic value of the stiffness 

(infinite da). These are given by 

 

Dispersions during tightening. Depending on the tightening process of the bolt there will be 

dispersion in the assembly force. The dispersions of Fp between FPmin and FPmax that can occur 

during tightening is illustrated in Figure 6.18. The maximum preload Fpmax must remain smaller 

than the permissible bolt force, which is equal to 90% of yield stress for bolts up to M39. 

Set/embedding. During the tightening process up to the assembly preload Fp the bearing 

surface under bolt head and nut and the contact planes between the plates are flattened. This 

will also take place when the external load is applied. Different estimates for this set or 

embedding can be found in the literature. The most simple expression (see [11]) is completely 

independent both of the number of junction lines and of the size of the irregularities of the 

mating surfaces. For solid joints the set δz (see Figure 6.18) is directly given by the relative 



 

length (lm/d). 
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[billedtekst start]Figure 6.18: Deflection diagram used to determine the influence of yielding 

and preload distribution.[billedtekst slut] 

 

Other expressions that also depend on the number of junction lines can be found. But 

here we limit the discussion to expression (6.64). Due to the setting of the joint by the amount δZ 

the assembly preload Fp is reduced by the amount Fz. The preload P Fp – Fz is what remains. P 

must be greater than or equal to the required preload. The set causes a reduction in the 

elongation of the bolt by Fzfb and the compression of the plates by Fzfm. Therefore 

δz = Fzfb + Fzfm (6.65) 

and 

 

In order to avoid setting when using high preload bolts; no washers, locking plates or 

spring rings must be used under the bolt head or nut. It is important that the surfaces under 

bolt head and nut are properly finished and at right angles to the axis of the bolt. 

6.8 Superposition of preload and working loads 

If an axial tensile load Fa acts centrally on a symmetrically shaped and (centrally) preloaded 

bolted connection under the bolt head and nut of a through bolt, the bolt is elongated by a 

amount δba and the compression of the plates is reduced by the equivalent amount δma. The bolt 

and plate are engaged parallel to the tensile load Fa. The additional bolt force is expressed as 

Fba = kbδba (6.67) 

and 

Fa = (kb + km) δba (6.68) 

The clamping force in the plates is reduced by 
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Fma = Fa – Fba (6.69) 

The forces are shown in the deflection diagram Figure 6.19. 

Defining the force ratio ϕ by 

 

it follows that 

 

The residual clamping force in the junction line Fc after setting and loading is 

Fc = P – Fma = P – (1 – ϕ)Fa (6.72) 

it must be at least equal to the required clamping force Fc ≥ FCreq. 

With αa as the tightening factor the maximum assembly load becomes 

Fpmax= αaFPmin = αa (FCreq + (1 – ϕ)Fa + Fz) (6.73) 

Distribution of forcc over retained members. In general the external axial force does not act 

directly below the bolt head and nut even when acting centrally, but within the retained 

members. If it is assumed that the points where the force is acting are not at a distance lm 

between the bearing surfaces of the bolt head and nut, but only at the distance nlm where 0 < n < 

1, then all the areas of the plate are no longer relaxed by the axial force Fa as the stiffness ratio of 

the loaded and relaxed areas of the bolted joint change. The relationships are shown in Figure 

6.19. 

 

[billedtekst start]Figure 6.19: Deflection diagram for working load inside the restrained 

members.[billedtekst slut] 
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Dynamic loading. One of the important reasons for preloading bolts is the reduction in the 

amplitude stress the bolts "feel" from a dynamic load. This is can be illustrated graphically as 

done in Figure 6.20. 

The externally applied load is assumed to vary between a lower value Fat and an upper 

value Fau. Both are regarded as being positive when applying tension to the bolt. In Figure 6.20 

the three different possibilities for the sign of the two forces are shown. In Figure 6.20(a) both 

forces are positive, it is clear from the figure that the amplitude force the bolt "feels" are much 

smaller than the externally applied amplitude, i.e. 

 

The same is true for the two other cases in Figures 6.20(b) and (c). The reduction in the 

amplitude is controlled by the size of the force ratio ϕ. 

 

[billedtekst start]Figure 6.20: Dynamic loading. In the three figures the variation of the force in 

the bolt is illustrated together with the size (including sign) of the upper and lower size of an 

external loading.[billedtekst slut] 

Loading up to the plastic region. If a bolt is stressed by a centrally acting external tensile load 

Fa into the plastic region, a change in the preload triangle (represented by a broken line) then 

follows, as shown in Figure 6.21. After the relaxation the removal of the external load Fa only the 

preload reduced by FZpl remains. FZpl is obtained with 

 



 

where δmpl is the portion of plastic deflection under the total bolt force Fbrnax after Fa is applied. 
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[billedtekst start]Figure 6.21 Plasticity in the bolted connections.[billedtekst slut] 

6.9 Failure of bolted connections 

In order to design bolted connections the external loads that occur during operation must be 

known as precisely as possible. It is useful for design purposes to make a distinction between 

frequently and rarely occurring working loads. The rare heavy extra loads are statistically 

assessed in terms of strength calculations, whereas for frequently occurring working loads it is 

usually an assessment of fatigue strength that is aimed for at least at the design stage. The ideal 

is a bolted connection that fully compensates the connecting sections of the members for any 

working extra loads that may arise. Bolted connections can therefore fail either by static failure 

or by dynamic failure (fatigue). 

Static failure 

1) If a minimum force, Fcreq, is needed between the assembled parts then the maximum 

preload must have the value given by 

FPmax = αaFPmin = αa (FCreq, + (1 – ϕ)Fa + Fz) (6.76) 

2) The maximum stress in the bolt shank should be less than the proof strength, σp, i.e. 

 

The proof strength is the stress at which the bolt begins to take a permanent set. This stress is 

typically a little smaller than the yield stress. If the proof strength is not know the yield stress 

can be applied instead with some caution. 

3) The stress in the thread should be checked. The stress level depends on the bolt being 

made from a ductile or brittle material. The difference is that with a ductile material all 

threads will carry the load and therefore the shear area of all the threads is used. In the 

stress level check for a brittle material only one thread will carry the load. Here it is 

worth mentioning that a good assumption is that the first turn of the thread carries half 



 

the load (P/2) the next half of the remaining load (P/4) etc. 

In order to find the stress level we need the shear area. If the nut is the strongest then the 

thread of the bolt will be stripped at the minor diameter d3if the bolt is the strongest the thread 

of the nut is stripped 
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Table 6.6 Surface pressures σg.. 

Material Ultimate tensile stress 

σut 

N/mm2 

Surface pressure 

σg 

N/mm2 

S235, St37 370 260 

E295, St50 500 420 

C 45 800 700 

42 CrMo 4 1000 850 

30 CrNiMo 8 1200 750 

X 5 CrNiMo 18 10 500-700 210 

X 10 CrNiMo 18 9 500-750 220 

at the nominal diameter d and if they are of equal strength the stripping will take place 

somewhere in between most probably at the pitch diameter d2. 

The shear area for one full revolution of the thread depends on the thread design but for 

the ISO thread we can approximate the three different situations by 

Ash = 0.87πd3p (6.78) 

Ash = 0.8757π d3p (6.79) 

Ash = 0-5πd2p (6.80) 

For a brittle material we have that the following must be fulfilled 

 

while for a ductile material with nut height ln we have 

 

4) Pressure under bolt head and nut must be checked whether the permissible pressure in 

the bearing surface of the bolt head and nut has been adhered to. 

 



 

Here elastic tightening is assumed. For permissible unit pressures σg see e.g. Table 6.6. 

Dynamic failure 

To verify that the bolt does not fail by fatigue we must find the mean and alternating stress in 

the bolt. The mean and amplitude value of an alternating force in the bolt are given by 
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The corresponding stresses are 

 

Estimate for the stress concentration factors for bolted connection are ([5]) 

ISO class ≤ 5.8 ⇒ Kf = 2.2(Rolled thread) 

Kf = 2.8(Cut thread) 

Kf = 2.1 (Fillet under head) 

ISO class ≥ 6.6 ⇒ Kf = 3.0(Rolled thread) 

Kf = 3.8(Cut thread) 

Kf = 2.3(Fillet under head) 

Kfm = 1.0 

The mean and alternating stress can then be used in a modified Goodmann diagram, see 

Chapter 4. 

6.10 Design modification/optimization 

Improvement in fatigue life of bolts can be achieved in three principally different ways 

• Improving the joint stiffness factor by minimizing the bolt stiffness or/and 

maximizing the clamped material stiffness 

• Improving the load distribution along the thread, by design changes made to the 

nut 

• Minimizing the stress concentration factor in the bolt by applying shape 

optimization to the bolt design 

The first bullet is a matter of practical design and selecting appropriate bolt nominal 

diameter relative to the thickness of the material clamped between the bolt head and the nut. 

Improvement of the joint stiffness factor is discussed in e.g. [8], The second bullet deals with the 

practical problem that for a traditional thread design the load is not evenly distributed along the 

thread, and the first turn of the thread can take up to 50% of the total load. To improve this 

point design changes must be made e.g. changing the design of the nut. 

In [6] it is shown how the maximum stress of a M12 bolt/nut connection can be reduced 

by 34%. This reduction is achieved by design changes made both to the nut and the shank of the 

bolt, i.e. the third bullet. The optimized design is shown in Figure 6.22 
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[billedtekst start]Figure 6.22: Von Mises stress contour plot, zoom of the first 2 thread roots and 

the shank fillet of optimized design. [6][billedtekst slut] 

6.11 Nomenclature 

ac mm Thread clearance between bolt and nut for trapezoidal thread 

d mm Bolt nominal diameter 

da mm Outer diameter of member plates 

dc mm Diameter contact area between member plates 

dh mm Hole diameter in plates 

dw mm Bolt head diameter or washer diameter 

d2 mm Pitch diameter of bolt thread (mean flank diameter) 

d3 mm Minor diameter of bolt thread 

fb mm/N Flexibility of bolt 

Fh mm/N Flexibility of bolt head 

fm mm/N Flexibility of member plates 

fn mm/N Flexibility of nut 

fte mm/N Flexibility of engaged thread 

fto mm/N Flexibility of open part thread root 

ftn mm/N Flexibility of engaged thread and nut 



 

f1..n mm/N Flexibility of individual bolt shank segments 

h mm Thread profile height 

kb N/mm Stiffness of the bolt 

km N/mm Stiffness of the member plates 

li mm Length of shank section i 

l m mm Thickness of member plates 

lt mm Length of open thread section 

lh mm Assumed length of bolt head 

ltn mm Assumed length of nut 

p mm Pitch 

ph mm Lead 

r mm Axis symmetric coordinate 

rn mm Mean radius of contact between nut and plate (head and plate) 

z mm Axis symmetric coordinate 

Ai mm2 Cross section area of bolt section 
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As mm2 Stressed cross section of bolt thread 

Ci – Stiffness constants 

D mm Major diameter of nut thread 

Eb N/mm2 Modules of elasticity of bolt material 

Em N/mm2 Modules of elasticity of plate material 

Fa N External working load 

Famp N Amplitude of alternating force 

Fal N Minimum working load 

Fau N Maximum working load 

Fb N Force in bolt 

Fba N Part of working load in the bolt 

Fc N Clamping force 

Fm N Force in the plates 

F mean N Mean value of alternating force 

Fma N Part of working load in the plates 

Fn N Force acting normal to thread surface 

Fp N Assembly force 

G – Scaling factor 

Kf – Fatigue stress concentration factor 

K fm – Fatigue stress concentration factor (on mean value) 

P N Preload in the bolt 

Fz N The setting force, the reduction in clamping force due to set 

between components 



 

Fzpl N Preload reduction due to plastic deflection 

Tl Nm Loosening torque 

Tt Nm Tightening torque 

α rad Flanks angle 

αa rad Assembly force ratio (tightening factor) 

β rad The pitch angle at d2 

δb mm Elongation of bolt 

δbp mm Assembly elongation of bolt 

δm mm Compression of the member plates 

δmp mm Assembly compression of the plates 

є – Non dimensional bolt head width parameter 

η – Non dimensional bolt hole parameter 

γ – Non dimensional bolt head height parameter 

µ – The coefficient of friction in the thread 

µn – The coefficient of friction between nut and plate (head and 

plate) 

ϕ – Force ratio 

σc(r) N/mm2 Surface pressure distribution between bolt head and 

member plates 

σg N/mm2 Maximum surface pressure between bolt head and member 

plates 

σp N/mm2 Proof strength of bolt 

σut N/mm2 Ultimate tensile stress 

σy N/mm2 Yield stress 

θ rad Angle between thread force components in space 



 

φ rad Half of top angle of stress frustum 

ζ – Non dimensional washer height parameter 
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Chapter 7 Couplings and universal joints 

7.1 Introduction to couplings 

Couplings (and clutches) are power transmitting machine elements. A torque is transmitted 

with a rotational speed from one shaft to another, placed along the same axis or nearly the same 

axis. 

Couplings. are used to transmit torque permanently in aligned and non-aligned shafts and often 

in addition, in order to improve the dynamic characteristics of a drive mechanism and to engage 

the torque. 

Clutches.1 are classified into the two main groups related to the torque transmission principle: 

positive or frictional. Further on, clutches are divided into closing clutches and opening clutches. 

Finally, they can be described by the method of actuation (mechanical, pneumatic, hydraulic 

and electromagnetic). Special types of clutches are centrifugal clutches and overload clutches. 

Brakes and one-way clutches can be seen as belonging to the second group. 

7.2 Functional characteristics 

As mentioned, couplings and clutches can be classified into the two main groups: couplings 

with constant connection between two shafts (permanent torsionally stiff couplings and 

permanent elastic couplings) and clutches where the shafts under certain conditions can rotate 

relatively to each other. To the last group belongs: frictional clutches, centrifugal clutches and 

hydrodynamic clutches. Another way of describing the functional characteristics is: 

1. couplings for shaft elongation or shaft division 

2. couplings for misaligned shafts or perception of angular deviation of shafts 

3. clutches for man-operated engagement or disengagement 

4. clutches for torque limitation 

5. clutches activated by speed 

6. clutches activated by differences in angular rotation 

We will not be able to group all occurrences of couplings and clutches into these distinct 

functions as some occurrences will belong to more than one function group. Even though, when 

choosing a coupling, it is of great importance to analyze exactly which functional requirements 

are to be fulfilled. 

                                                      

1 Only mechanical clutches are described here. 
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7.2.1 Shaft elongation or shaft division 

Long shafts may need to be divided into two or more parts due to assembly problems, e.g. if 

space is limited. Other reasons could be easier handling, transportation or manufacturing. 

Possible methods of assembling long shafts are by the use of flange couplings, Figure 7.12, double 

tooth couplings, Figure 7.3, split muff couplings, Figure 7.13 or special types of similar shape as the 

split muff coupling, but based on the principle of conical seat and hydraulic pressure fit. 

 

[billedtekst start]Figure 7.1: Possible functional demands for couplings.[billedtekst slut] 

7.2.2 Misaligned shafts or angular deviation 

Two shafts are not always in the ideal position relative to each other. To prevent axial forces or 

radially directed forces from one shaft to the other, special types of couplings can be used. Axial 

forces can be caused by thermal expansion. To prevent damaging axial forces the simple positive 

contact coupling, Figure 7.2 or a more advanced type, the double tooth coupling, Figure 7.3, can be 

used. 

 

[billedtekst start]Figure 7.2: Positive contact coupling, only for axial displacement.[billedtekst 

slut] 



 

 

[billedtekst start]Figure 7.3: Double tooth coupling. (Bovex). Suitable for small axial, radial 

and angular displacements.[billedtekst slut] 
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Radial forces can be caused by shaft deflection or misalignment of the shafts. 

Misalignment often results in large radial forces damaging the nearby bearings. Elastic 

couplings will normally not be able to solve problems related to misalignment. 

Only a few coupling types can handle these problems. One is the double tooth coupling, 

eventually equipped with an elongation tube (spacer) bolted between the two outer parts of the 

coupling. (See Figure 7.3). 

For even bigger angular deviation between the axes, a Cardan shaft (see Figure 7.22) has 

to be used. Examples are in rolling mills, milling machines and in the transmission to the wheels 

in automobiles. 

Another type of angular deviation is the torsional deviation as obtained in elastic 

couplings used for reducing torque fluctuations or vibrations, thereby preventing damage to 

the machinery. For almost all elastic couplings (see page 162) the torsio-elastic function is the 

absolutely dominating and this type of couplings requires careful alignment of the shafts. 

7.2.3 Man-operated engagement or disengagement 

The simplest type is the positive (interlocking) clutch. Positive clutches can be engaged only when 

the shafts are at a standstill or running at the same speed. Disengagement can however take 

place when running even under torque, provided that the disconnecting force can be 

established. The most well-known type of man-operated clutch is the friction clutch. This type of 

clutch can be operated mechanically, electromechanically, or by the use of pneumatic or 

hydraulic force. 

7.2.4 Torque-sensitive clutches 

Torque-Sensitive Clutches, also called overload clutches, are safety clutches which protect 

machinery from damage as they do not exceed a predetermined torque load. The way of 

operation differs depending on the application. Examples are: 

• constant slip torque. Typical a friction clutch that has to maintain a high torque 

during acceleration. Suitable as start-up clutches for accelerating large masses 

and for limiting short duration peak torques during operation. Constant 

surveillance is needed to prevent overheating. See Figure 7.4. 

• slip with pulsating torque. See Figure 7.5. A radial pin clutch for PTO drive shaft 

(PTO: Power Take Off). These clutches are radially-acting ratchet clutches. Upon 

creation of an overload condition, torque is limited and transmitted in a 

pulsating manner during the slipping action that at the same time, provides 

audible warning. 

7.2.5 Speed-sensitive clutches 

These are clutches that allow smooth starting for the driving machines, electric motors or 



 

combustion engines, to accelerate first of all and drive the machine next. A soft starting clutch 

makes it possible to design for a reduced motor size or even reduced electricity supply for a 

machine that has to be accelerated to a high rotational speed with a high moment of inertia or 

load torque. 

Different types are: 

• Centrifugal clutches with segments. 

• Centrifugal clutches with powder or granulate as torque transmitting "fluid". 

• Speed-Sensitive Clutches based on the hydrodynamic principle. 
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[billedtekst start]Figure 7.4: Overload clutch for PTO drive shaft.[billedtekst slut] 

 

[billedtekst start]Figure 7.5: Radial pin clutch for PTO drive shaft.[billedtekst slut] 

An additional function for the speed-sensitive clutches is of course that they are torque-

sensitive. 

Even though the centrifugal clutch is normally recognized as a soft starting clutch, it has 

been seen as a simple "automatic" clutch for small lawn mowers, where the reel function seems 

to be an on-off function caused by the small moments of inertia in the lawn mower. 
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[billedtekst start]Figure 7.6: Centrifugal clutch.[billedtekst slut] 

 

[billedtekst start]Figure 7.7: Centrifugal clutch.[billedtekst slut] 

7.2.6 Directional (one-way) clutches, overrun clutches 

For this type of clutches the torque can only be transmitted from one part of the clutch to the 

counter part by relative rotation in one direction (locked condition). In the other direction, there 

can be no torque transmission at all (freewheeling condition). Examples of applications are: 

• overrun clutch (for bicycle hubs, starting motor drives). 

• return stop (for conveyor belts, centrifugal pumps, automatic gearboxes for motor 

vehicles). 

• step-by-step freewheel (for shaping machines, feed mechanisms, ratchet 

mechanisms). 

 

[billedtekst start]Figure 7.8: The freewheeling principle.[billedtekst slut] 
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[billedtekst start]Figure 7.9: Free wheels: one type is the sprag freewheel which has outer and 

inner rings with cylindrical races. Arranged in between are the individually sprung sprags. The 

drive mode is free from slip. Various sprag shapes make it possible to design different types 

suitable for: high torque, high indexing accuracy, or non-constant overrunning operation. 

Another type is the roller ramp freewheel, where either the inner or the outer ring has roller 

ramps, the other ring has a cylindrical race. The individually sprung rollers are arranged in 

between.[billedtekst slut] 

 

[billedtekst start]Figure 7.10: A freewheel clutch used as backstop in inclined conveyors or 

elevators to prevent the load from running back when the motor is switched off or in case of 

power failure. Other applications are in pumps, blowers and ventilators, to prevent reverse 

running due to the pressure from the flow medium after switching off.[billedtekst slut] 



 

7.3 Permanent torsionally stiff couplings 

7.3.1 Rigid couplings 

Rigid couplings require the two shafts to be exactly aligned through the coupling. In order to 

account for small misalignments, the bearings on each side of the coupling should be located so 

far away from 
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[billedtekst start]Figure 7.11: An indexing freewheel clutch used for producing fine feeds in 

packing-paper processing, printing or textile machines.[billedtekst slut] 

the coupling that the shaft can deflect. This is in contrast to an elastic coupling, where it is 

required that both bearings should be placed near to the coupling. 

Flange couplings are normally dimensioned to transmit the torque only with frictional 

locking provided by preloaded screws. The additional torque transmission capability due to 

shear stress in the bolts is neglected for safety reasons. 

Alignment is secured by male and female part or by the use of a two-piece intermediate 

faceplate that allow for radial disconnection. 

 

[billedtekst start]Figure 7.12: Flange coupling after DIN 116.[billedtekst slut] 

Split muff couplings (after DIN 115) may be used for small and medium range torques, 

but they are not suitable for alternating or intermittent loads. Before assembly the coupling 

must be bored to correct diameter usually with a thick piece of paper between the two halves to 

ensure sufficient pressure against the shafts after assembly. 

For Split Muff Couplings transmitting the torque solely by friction, it is essential to use a 

proper calculation method. In the absence of exact information about manufacturing tolerances, 

which is the normal case, a safe calculation method has to be used. Add to this that the two 

shafts shall have exactly 
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[billedtekst start]Figure 7.13: Split Muff Coupling after DIN 115.[billedtekst slut] 

the same diameter as a prerequisite for the shaft-hub calculation. Please note that the split muff 

coupling basically consists of two shaft-hub connections. 

 

[billedtekst start]Figure 7.14: Three different premises for the calculation. 1: Line contact. 2: sine 

pressure contact. 3: constant pressure.[billedtekst slut] 

1. Line contact between muff and shaft 

The total force from the bolts on one shaft and one side of the coupling is F. According to the 

example in Figure 7.13 and Figure 7.14 the force is 

∑F=4FV (7.1) 

The permissible maximum torque is calculated to 

Ts = 2µr∑F =µd∑F (7.2) 

2. Sine shaped pressure distribution 

pφ = p0 sinφ (7.3) 

dF = pφrdφ · l (7.4) 

See detailed methods of calculation for permissible maximum torque Ts in Chapter 9, 

(Drum brakes). 
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3. Constant pressure between muff and shaft. 

p = constant (7.6) 

dF = prdφ·l (7.7) 

 

7.3.2 Universal joints and other special joints 

The universal joint is also termed a Cardan joint or a hook joint. In order to define a universal 

joint we use the methodology from multibody dynamics as it may be found in [7]. We define 

first the concept of transformation matrix in 2D. 

 

[billedtekst start]Figure 7.15: Global and local coordinate systems, and a geometric 

vector.[billedtekst slut] 

In Figure 7.15 the global coordinate system x – y and a local coordinate system ξ–η are 

defined, the origo of the two coordinate systems coincides and the local coordinate system is 

rotated the angle θ counter clockwise. The angle is generally measured positive counter 

clockwise and by the arrow we define from which axis we measure the angle. The figure also 

show a geometric vector {s}. We assume that the geometric vector is fixed to the local coordinate 

system and as such will rotate with this coordinate system. Seen from the global coordinate 

system the vector is termed {s} and from the local coordinate system  (a vector described in 

local coordinates is indicated by a prime). From the geometry we find 
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where [A] is the transformation matrix that transform from local to global coordinates. In 2D 

this transformation matrix is given by 

 

From (7.10) we directly find the time derivative 

 

where the dot indicates differentiation with respect to time as usual. The last simplification is 

due to the assumption that the vector is fixed in the local coordinate system  Using 

the notation w= dθ/dt we find that 

 

In 3D the transformation matrix becomes more involved, but for the case of a universal 

joint we may make some simplifications as shown later. 

The next concept is constraints. A constraint is something that the system must fulfil at 

all times. The simplest form of joint is a revolute joint shown in Figure 7.16. 

 

[billedtekst start]Figure 7.16: Two bodies constraint by a revolute joint.[billedtekst slut] 

The constraints that specifies the connection of the two bodies is given by 

{r1} + {s1} = {r2} + {s2} (7.14) 

or by using the transformation matrix for each body 
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[billedtekst start]Figure 7.17: Universal joint.[billedtekst slut] 

The purpose is to define the universal joint shown in Figure 7.17. The universal joint 

permits angles up to 2π/9 between the two rotation axes, but transforms a uniform angular 

velocity w1 = dϕ1 /dt into an angular velocity w2 = dϕ2 /dt depending on the bend angle α and on 

the actual angle of rotation ϕ1 of shaft 1 as we shall see later. As indicated the transformation 

matrix in 3D is more complicated, this is because three angles do not result in a unique position 

unless the order of rotation is given. In some cases simplifications are however possible. 

 

[billedtekst start]Figure 7.18: 3D coordinate system and definition of rotation angles.[billedtekst 

slut] 

The transformation matrix in 3D when we only rotate around one axis as shown in 

Figure 7.18 is given respectively by 

 

A universal joint constraint four d.o.f. (degrees of freedom). The first three constraints is 

similar to a spherical joint in that the center of the cross (see Figure 7.17) is identical - seen from 

the local coordinate 
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system on each body. Mathematically the constraint of a spherical joint is identical to the 

definition of the revolute joint in 2D presented in (7.15). We aim here to find the connection 

between the rotation of body one ϕ1 and the rotation of body two ϕ2 (see Figure 7.17). To find 

this connection we first place the local coordinate systems as shown in Figure 7.19. 

 

[billedtekst start]Figure 7.19: lacement of local coordinate systems in a universal 

joint.[billedtekst slut] 

As shown the axis of rotation is x1 for body one and x2 for body two. Also shown is the 

angle α that defines the angle between the two rotation axes. The origo of the local coordinate 

systems is placed in the center of the cross of the universal joint. We may then choose to let the 

cross be defined by the y1 and z2 axes or the y2 and z1 axes. In any of the cases the transformation 

matrices are found directly from (7.16). 

 

Now lets assume that the cross is defined by the y1 and z2 axes this gives us two local 

vectors aligned with these two directions 

 

The constraint that defines the relation between the angle ϕ1 and ϕ2 is then given by the 

orthogonality 

 

By using [A1] and [A2] we can simplify (7.20) and find 

– cos ϕ1 sin ϕ2+ cos α sin ϕ1 cos ϕ2 = 0 ⇒ 

tan ϕ2 – cos α tan ϕ1 = 0 (7.21) 

If we had made the other choice of axes to define the cross, i.e., 
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The resulting equation is 

tan ϕ1 – cos α tan ϕ2 = 0 (7.23) 

from (7.21) and (7.23) we see that the position of the cross is important. 

 

[billedtekst start]Figure 7.20: The lack of output angle ϕ2 relative to input angle ϕ1.[billedtekst 

slut] 

Figure 7.20 shows a plot of 

 

as a function of the input angle ϕ1 based on (7.23). It is directly seen that the two angles ϕ1 and 

ϕ2 are not identical, except for each quarter of a full turn. Using this in (7.21) we find 

tan(ϕ2 + π/2)– cos α tan(ϕ1 + π/2)= 0 ⇒ 

tan (ϕ1)– cos α tan (ϕ2) = 0 (7.25) 

i.e. we see that (7.21) and (7.23) are principally identical and the difference expresses the 

position of the cross. 

The next important question is the output angular speed w2 as a function of the input 

angular speed w1. This is found directly by differentiating (7.23) with respect to time. We find 

 

which we may rewrite to 
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In Figure 7.21 the ratio w2/w1 is shown as a function of the input angle. From (7.27) we 

find that then maximum and minimum value of the output shaft angular speed is 

(w2)max = w1 cos α (w2)min = w1/ cos α (7.28) 

 

[billedtekst start]Figure 7.21: The ratio between output angular speed and input 

angle.[billedtekst slut] 

The next quantity we calculate is the angular acceleration of the output shaft under the 

assumption that the angular acceleration of the input shaft is zero, i.e., that ẇ1 = 0. We find the 

acceleration by simple differentiation of (7.27) with respect to time 

 

and we may rewrite this 

 

As it is seen from (7.30) and (7.27) we get fluctuations in both angular speed and angular 

acceleration of the output shaft although the input shaft have constant angular speed. 

Due to the forces caused by acceleration and deceleration of the second shaft the 

designer has to keep the bend angle as low as possible. According to the company Walterscheid 

(See [5]) an increase in bend angle α from π/36 to π/18 will cause a decrease in lifetime to 50% of 

the original value. 

Two universal joints are normally (when possible) combined to what is called a Cardan 

shaft, see Figures 7.22 and 7.23 . In that way the fluctuation in speed is neutralized and the 

"only" problem is that the intermediate shaft is fluctuating in speed for which reason the 

moment of inertia has to be kept as low as possible. As seen in Figures 7.22 and 7.23 it is a 

precondition for proper operation that the two bend angles are of the same size. 

It is also important that the two crosses are rotated π/2 compared to each other, this can 



 

e.g. be seen in Figure 7.22(a), where we notice the different placement of the cross of the two 

universal joints. This 
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[billedtekst start]Figure 7.22: Cardan shaft.[billedtekst slut] 

 

[billedtekst start]Figure 7.23: Definition of the angular speeds in a Cardan shaft.[billedtekst 

slut] 

corresponds to the center shaft having the two axes in the to universal joints aligned. If this is 

not done you will not remove the fluctuations, but increase them further. That the fluctuations 

are removed follows directly from (7.21), (7.23) and Figure 7.23. We find that 

tan ϕ2 = tan ϕ1/ cos α 

tan ϕ3 = tan ϕ2 cos α ⇒ tan ϕ3 = tan ϕ1 ⇒ ϕ3=ϕ1⇒w3=w1⇒ẇ3=ẇ1 

Other torsionally stiff "self-aligning" couplings are the curved tooth couplings, which allows for 

some axial and angular deviations. They have to be lubricated with grease or oil to avoid wear. 

 

[billedtekst start]Figure 7.24: Curved tooth coupling.[billedtekst slut] 
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[billedtekst start]Figure 7.25: Schematic depiction of misalignment. Radial misalignment ∆Kr 

dependent on length of spacer. Angular misalignment ∆Kw up to π/120 per coupling 

half.[billedtekst slut] 

7.4 Permanent elastic couplings 

7.4.1 General purpose 

Elastic couplings transmit rotary motion without slip and are primary used for reducing torque 

fluctuations or vibrations, thereby preventing damage to machinery. At least two goals are to be 

achieved: 

• Reducing peak loads by the elastic accumulating effect of the transmitting devices. 

A large twist angle reduces peak torque T at the start. See Figure 7.26. The 

primary part twist the angle ∆φ = φ2 – φ1 relative to the secondary part. By using 

a softer coupling this ∆φ increase. Stretching the impulse over a larger time span 

may reduce the peak torque to an acceptable level. 

• Avoiding torsional frequencies of resonance. That is to choose or design the elastic 

coupling so that the operating speed range is outside the resonance area. 

(Normally comfortably higher than the resonance speed). 

 



 

[billedtekst start]Figure 7.26: For the same amount of absorbed energy the soft coupling results 

in the lowest peak moment.[billedtekst slut] 
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The reduction in torsional load ∆T for the coupling will be even bigger if a fraction of the 

energy is transformed into heat. This is called damping. Damping in the coupling for the most 

part relies on the material damping of the elastomers used and on the friction coefficient in the 

contact surfaces. The best damping effect is normally achieved by using a soft coupling. 

By periodic pulsating torsional load (from combustion engines) it might be necessary to 

calculate the amplitude from the forced vibration. For a simple two-mass system this can be 

done when mass moment of inertia on both sides of the coupling, and characteristics for the 

coupling as the dynamic stiffness and the relative damping coefficient are available. 

A coupling normally has to be chosen so that the critical rotational speed wC is 

substantially lower than the working speed w as the amplification factor is strongly dependent 

on the ratio w/wC. A soft coupling has a low critical speed. Often it is an advantage to choose a 

coupling with a progressive characteristic in order to limit the angular fluctuations, between the 

two coupling halves. 

 

[billedtekst start]Figure 7.27: Permanent elastic coupling. The elastic element consists of a 

reinforced rubber "tire" with a radial cut. The b)-type allows bigger axial misalignment than the 

a)-type.[billedtekst slut] 

 

[billedtekst start]Figure 7.28: Compact torsio-elastic coupling. (Up to ±Π/18). Type: Rollastic 

from the company: SEW-Eurodrive GmbH & Co KG. The shape of the elastic elements is 

cylindrical when the coupling is not loaded.[billedtekst slut] 

7.4.2 Selection procedures 

The selection of a suitable coupling is normally done in two steps, first the type of elastic 

coupling should be chosen and next the coupling size has to be determined. Figure 7.29 shows a 



 

system with coupling schematically. 
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Type selection. Simple speed drive mechanisms (including electric motors, centrifugal pumps 

and fans) are coupled to elastomer couplings with medium elasticity (∆φ < π/36) in order to 

compensate for starting impulse and minor shaft misalignment. Highly variable-speed drive 

mechanisms (piston engines, presses etc.) or the transfer of resonance speed require highly 

elastic couplings (∆φ < π/36 to Π/6). 

Size selection. This can partly be done on the basis of information from the manufacturers and 

partly on the basis of calculations described in DIN 740 Part 2 [4]. The permissible nominal torque 

(TCN) of the coupling must be at least equal to the nominal torque (TLN) on the driven machine (or 

to the nominal torque (TAN) on the driving motor). 

TCN ≥ TLNSθ (7.31) 

Where 

TLN the nominal torque for the driven machine 

Sθ coefficient that makes allowance for the decrease in strength of elastic rubber material 

when exposed to heat. Sθ = 1 for steel 

Table 7.1: Temperature coefficient Sθ. 

Material for elastic elements –20... + 30°C +30... + 40° C +40... + G0°C +60... + 80°C 

Natural rubber 1.0 1.1 1.4 1.6 

Polyurethan 1.0 1.2 1.5 not allowed 

Aerylnitril -Butadien 1.0 1.0 1.0 1.2 

The permissible maximum torque (TCmax) for the coupling must be at least equal to the 

peak torque (TAS) or (TLS) that occur in operation as a result of torsional vibration on the drive 

side and load side taking into account the mass moments of inertia IA and IL, the impulse 

coefficients SA, SL, the frequencies of starts and the temperature coefficient Sθ. 

TCmax ≥TSSzSθ (7.32) 

where 

TS maximum torque at coupling,  

TAS maximum input torque from motor 

TLS maximum load torque 

m Ratio of drive end to driven end mass moment of inertia,  

SA , SL impulse coefficient (dynamic factor) 



 

Sz starting coefficient, Sz = 1 for up to 120 starts per hour, Sz = 1.3 for 120 to 240 starts per 

hour 
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Table 7.2: Impulse coefficients SA, SL. 

Impulse Coefficient Driving Machine 

Driven Machine E-motor Combustion 

Engine, with more 

than 4 Cylinders 

Combustion Engine 

3 Cyl. 2 Cyl. 1 Cyl. 

Generators 1.5 .. 1.7 1.7.. 1.9 2.0 .. 2.2 2.3 .. 2.5 2.7 .. 

2.9 

Elevators 1.6.. 1.8 1.9 .. 2.1 2.2 .. 2.4 2.5 .. 2.7 2.9 .. 

3.1 

Cranes 1.8 .. 2.0 2.1 .. 2.3 2.4.. 2.6 2.7 .. 2.9 3.1 .. 

3.3 

Piston pumps and compressors 

with flywheel Wheel 

2.1 .. 2.4 2.4.. 2.7 2.7 .. 3.0 3.1 .. 3.4 3.5 .. 

3.8 

In case of a continuous periodic torque fluctuation from the drive system or from the driven 

system the fatigue torque limit TCW for the coupling must not be exceeded. These (rough) 

calculations of coupling performance characteristics can be made under the condition that in 

terms of torsional vibrations, the machinery can be reduced to a linear two-mass vibration 

generating system. 

TCW ≥ TWiSθSf (7.33) 

where 

TWi amplitude of the i-th harmonic torque component,  

 

TAI,TLI amplitude of the external torque excitation of the i-th order acting on the drive end,. . . 

acting on the driven end 

Sf frequency coefficient, Sf = 1 for f ≤ 10Hz,  

Vfi amplification factor depending on the type of clutch  



 

 

[billedtekst start]Figure 7.29: Schematic depiction of two-mass-system with elastic 

coupling.[billedtekst slut] 

For an one-mass system the natural frequency is 
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Rt,dyn is the dynamic torsional stiffness of the coupling. 

 

[billedtekst start]Figure 7.30: Schematic depiction of one-mass- system. Motor side.[billedtekst 

slut] 

 

[billedtekst start]Figure 7.31: Schematic depiction of one-mass- system. Machine 

side.[billedtekst slut] 

For a two-mass system, coupled together through an elastic coupling, the natural 

frequency is 

 

where I = I1 + I2 is the total mass moment of inertia of the system. Exciting a two-mass system 

with impulses equal to the natural frequency will cause resonance and if the system is not 

sufficiently damped the amplitude will cause breakage. The critical rotational speed for a 

system is defined as 

 

where i is the order number (= number of impulses per revolution) Ex. is i = 2 for a 4 

cylinder 4 stroke motor, because of 2 impulses per revolution. (One impulse for every two 

revolution per cylinder). 



 

7.4.3 Damping 

 

[billedtekst start]Figure 7.32: Damped (torsional) vibrations in elastic couplings. The hatched 

area to the left represents the static work (WD) absorbed in the coupling. The hatched area in the 

middle represents the dynamic heat loss (Wd) in the elastic elements. The dynamic load on the 

coupling can be regarded as a steady-state mean torque Tm superimposed with an alternating 

load with an amplitude Ta.[billedtekst slut] 
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A relative damping factor ψ is defined as the relation between Wd and We (We= the 

additional elastic energy from the + Ta -component). 

 

At resonance speed (= the critical speed) the amplitude Ta will be increased with 

 

In case of an undamped torsional vibration, where Wd = 0 (no absorption of energy); ψ = 

0 and VR ⇒ ∞. Under normal running conditions the amplification factor can be calculated from 

 

where fi, [Hz] is the operating rotational speed. 

In Figure 7.32c) it can be seen that the best running condition is achieved, when running 

with over- critical speed. Therefore, it is normally advantageous to choose a soft coupling with 

nR substantially lower than the running speed. 

7.4.4 Max coupling torque for squirrel-cage motor 

Especially for the squirrel-cage motor it is interesting to calculate the maximum coupling torque 

based on information about the torque as a function of the rotational speed of the driving motor 

and the machine during a start-up. An example could be the starting of a ventilator or 

centrifugal pump by means of a squirrel-cage motor. 

 

[billedtekst start]Figure 7.33: The torque function for a squirrel-cage motor and a centrifugal 

pump as function of the number of revolutions.[billedtekst slut] 

Using a permanent elastic coupling the acceleration can be calculated 

 

The torque for the coupling can be calculated by either two equations 
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or 

 

It is important to notice that the squirrel-cage motor passes through its torque curve 

(from left to right) every time it starts. It can be seen that the coupling load is nearly three times 

the nominal torque load for the motor during a starting period. 

7.5 Overload couplings and safety couplings 

Overload Couplings and Safety Couplings are used to protect machinery against a too high 

torque load. A typical scope of application is the Power Take Off drive shaft between a tractor 

and a machine. The significant difference in available power from the tractor and the power 

required for the machine, combined with a heavy flywheel in the tractor makes it necessary 

with an overload coupling as a protection during start-up as well as under working conditions. 

7.6 Nomenclature 

fe Hz Natural frequency 

fe1, fe2 Hz Natural frequency for an one mass system 

i – Order number (=number of impulses per revolution) 

m – Ratio of drive end to driven end moment of inertia 

NR Hz Critical rotational speed 

p0 N/mm2 Pressure extreme between components 

pφ N/mm2 Pressure value depending on angular position 

{s} mm Geometric vector defined in global coordinate system 

{s'} mm Geometric vector defined in local coordinate system 

[A] – Transformation matrix 

FV N Bolt force 

I1, I2 kgm2 Moment of inertia 



 

Rt, dyn kgm2/s2 Dynamic torsional stiffness of the coupling 

Sf – Frequency coefficient 

Sz – Starting coefficient 

SA – Impulse coefficient 

SL – Impulse coefficient 

Sθ – Temperature coefficient 

TAi, TLi Nm Amplitude of the external torque excitation of the i-th order 

acting on the drive end, acting on the driven respectively end 

TAS Nm Maximum input torque 

TC Nm Torque transmitted by clutch 

TCmax Nm The permissible maximum torque in the coupling 

TCN Nm The permissible nominal torque in the coupling 

TCW Nm Fatigue torque for the coupling 

TL Nm "Static" torque load to drive the machine 

TLN Nm The nominal torque for the driven machine 
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TLS Nm Maximum load torque 

TM Nm Mean torque transmitted clutch 

Vfi – Amplification factor at resonance speed 

VR - Amplification factor depending on the type of 

Wd Nm The dynamic heat loss in the elastic elements 

WD Nm Static work absorbed in the coupling 

We Nm Additional absorbed energy from the +Ta-component 

α rad Angle between shaft in universal joint 

µ – Coefficient of friction 

w rad/s Angular speed 

ϕ rad Angle 

ψ – Relative damping factor 

θ rad Angle 
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Chapter 8 Clutches 

Clutches1 are classified into the two main groups related to the torque transmission principle: 

positive or frictional. Furthermore clutches are divided into closing clutches and opening clutches 

and finally they can be described by the method of actuation (mechanical, pneumatic, hydraulic 

and electromagnetic). Special types of clutches are centrifugal clutches and overload clutches. 

Positive (interlocking) clutches (direct engaged clutches) 

To disengage one shaft from another, both running at low and high speed is relatively simple. It 

just results in instantaneous fall-out of the transmitted torque. In addition, an engagement 

between two shafts running at the same speed (or under stand-still condition) can take place 

without problems. 

Instantaneous engagement of shafts running with different speeds is normally not 

possible as the difference in kinetic energy 

 

has to be supplied or removed instantaneously. According to the principle of angular 

momentum (Tacc = I(dw/dt)) it is seen that the torque should be infinite if the change in speed 

(dw) was instantaneous. As this is not possible, two shafts running with different speed must be 

engaged smoothly over a suitable span of time. 

8.1 Friction clutches 

Externally activated friction clutches are used in the transmission of torque from a driving to a 

driven shaft. The connection is provided by mechanical frictional engagement. 

Frictional clutches can be classified according to number and arrangement of frictional 

surfaces in 

• single surface clutches. See Figure 8.2. 

• dual surface (single-disc) clutches. 

• multiple surface (multiple-disk) clutches. See Figure 8.4. 

• cylindrical surface clutches 

• cone (surface) clutches 

                                                      
1 Only mechanical clutches are described here. 
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[billedtekst start]Figure 8.1: Electromagnetic tooth clutch. Shaft clutch with sliprings, engaged 

by spring force (5) and released by magnetic force. The axially movable armature plate (3) 

engage by spring force through the radially toothed parts (1) and (2)[billedtekst slut] 

 

[billedtekst start]Figure 8.2: Electromagnetic single-disc clutch. Many special designs exist for 

different applications. This one is with slipring body (1), coil body (2), coil (3), friction ring (4), 

carrier with friction lining (5), armature plate (6) and driving hub (7).[billedtekst slut] 

Each type has different characteristics. Without going into details, the single disc type is 

the most robust one(heat absorption and heat transfer). Multiple disc types are, generally 

speaking cheaper and space saving. They may be either made dry or wet (oil lubricated). 

8.1.1 Torque transmission (static) 

For a small surface element 2πrdr on a disc the friction moment is 

dT = 2πrdr · pμr (8.2) 

This is integrated over the entire surface to 
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1. Assume uniform distribution of interface pressure. This assumption is valid for an unworn 

(new), accurately manufactured clutch with rigid outer "disks". With reference to Figure 

8.3 the total torque for one friction surface is 

 

where p is the uniform level of interface pressure. The total normal force acting on the 

area is 

 

When eliminating the pressure p the total torque for one friction surface can be 

expressed by the normal acting force F 

 

 

[billedtekst start]Figure 8.3: Cut-out from a clutch drawing.[billedtekst slut] 

2. Assume uniform rate of wear at interface. It is a generally accepted assumption that wear 

rate is proportional to the rate of friction work which is friction force times rubbing 

speed. With an uniform coefficient of friction, the wear rate is proportional to the 

product of pressure times sliding speed. On the clutch face, speed is proportional to 

radius. On this basis, a new clutch (with uniform distribution of interface pressure) will 

have its greatest initial wear at the outer radius. After this initial running wear, the 

friction lining tends to wear at an uniform rate. Thus, assuming that 

 

where C is a constant. 



 

Introducing this in (8.3) the torque can again be calculated 
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To eliminate the constant C the total axial force (normal force) on the friction surface can be 

calculated 

 

With C inserted in the torque (8.8) this becomes very simple 

 

For a disc clutch that has been running for some time the friction moment can be calculated as 

the friction force Fµ acting on the mean radius rm. 

Friction radius 

In the literature the friction torque is often written as: 

T = µrfF (8.12) 

where rf is called friction radius. For the disc friction clutch the friction radius rf is obviously 

equal to the mean radius rm as seen in (8.11). For the new unworn disc clutch with uniform 

distributed interface pressure, as well as for a flange coupling the friction radius is 

 

The difference in value between the two expressions for the friction radius is normally 

negligible as the ratio ri/r0 normally is greater than or equal to 0.5. 

8.1.2 Transient slip in friction clutches during engagement 

During the engagement of a friction clutch under running condition, friction energy will cause a 

raise in temperature that can damage the clutch, if there is a mismatch (disproportion) between 

the clutch size and the working condition. 

A case will be described as a background for an analysis of the transient slip in a friction 

clutch during engagement. A machine is assumed to be started under a constant load situation. 

The task for the motor is 

• to accelerate the rotating masses in the machine (the inertia of the working 



 

machine). 
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[billedtekst start]Figure 8.4: Example of mechanical operated multi-disc clutch, [billedtekst 

slut]engaged. 

 

[billedtekst start]Figure 8.5: Principle arrangement of driving motor connected to machine 

through clutch.[billedtekst slut] 

• to balance the work load TL (coming from the process in the working machine). 

The work load TL is assumed to be constant and not depending on time or speed. The 

clutch torsional moment (torque transferred from the motor side of the clutch to the machine 

side of the clutch) is in Figure 8.6 shown to be a function of the time TC = f(t). The angular speed 

for the motor is supposed to be constant during the engagement period. Due to that, the mass 

moment of inertia for the motor I1 is of no interest and the torque from the motor TM will be 

equal to the clutch torque TC. At the beginning of the engagement period the machine will not 

rotate w2 = 0 until the clutch torque is equal to the work load torque TL. From that time (t = t1) a 

torque is left for an acceleration Tacc = TC – TL of the mass of inertia on the machine side. The 

equilibrium of angular moment gives 

 

and 

 

when t = tA then w2 = w1 and the clutch locks up. Note that from t2 to tA we have that 



 

 

leading to a linear w2-function. 

The clutch will during the engagement period receive the energy 
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[billedtekst start]Figure 8.6: An engagement case in general.[billedtekst slut] 

 

A part from that is transferred directly to the machine as mechanical energy 

 

and the difference will remain in the clutch as "heat" 

 

In a regular case where TL≠ 0, the dissipated energy in the clutch QC is 
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In a case where the work load during the engagement period is negligible (TL, = 0), the 

acceleration torque Tacc will be 

 

and the heat developed in the clutch QCD 

 

Often the clutch torque function TC = f(t) is unknown. In this case it is usually assumed 

that TC momentarily is brought to its maximum value, which of course has to be larger than the 

load torque TL. 

In this simplified case the acceleration torque is 

Tacc = TC –TL = constant (8.23) 

from which 

 

and the w2 function 

 

Now it is possible to calculate the engagement time tA as 
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[billedtekst.start]Figure 8.7: An engagement case, simplified.[billedteskst.slut] 

The dissipated energy in the clutch is (in the simplified case) 

 

In this equation can be calculated from 

 

 

which with tA from (8.27) gives 

 

Comparing the dissipated energy QC developed in the clutch during engagement under 

load condi tion with the dissipated energy under an unloaded engagement period 

 gives a good impression of the influence of the fraction TC/TL on the real heat load 

for a normal loaded start situation 
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[billedtekst.start]Figure 8.8: Dissipated energy as a function of TC/TL.[billedteskst.slut] 

TC has to be greater than about 2 times TL, to limit the developed heat to an acceptable level. An 

increase to more than 3 times results on the other hand only in minimal reduction in  See 

Figure 8.8. 

8.1.3 Dissipated energy in the clutch 

The dissipated energy from one engagement period for the clutch causes an increase in 

temperature in disc and neighbouring parts. Of course the highest raise in temperature will take 

place in the sliding surface and from there propagate to other parts of the clutch depending on 

heat conductivity resistance and heat transfer coefficient. 

The cooling of the clutch will take place during and after the engagement, see Figure 8.9, 

illustrating the conditions for a multi disc clutch. The heat transfer is calculated by using the 

Fourier equation for in-stationary heat transmission. A one dimensional analysis perpendicular 

to the sliding surfaces is often sufficient. 

 

where 

 

For further calculations it is advantageous to use this equation in a dimensionless form. 

Often calculated is the mean temperature raise ∆θ that would occur if the dissipated 

energy for one engagement would remain in the disks. 
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[billedtekst.start]Figure 8.9: Temperature in a clutch.[billedteskst.slut] 

 

[billedtekst.start]Figure 8.10: Qualitative description of temperature with many 

engagements.[billedteskst.slut] 

 

where m is mass of the heat absorbing disks and c is specific heat. (For steel: 0.46kJ/(kg°C), for 

cast iron: 0.55kJ/(kg°C)). With high frequency of engagement the above method is not sufficient. 

Instead a friction face load is calculated. In one hour the dissipated energy Qh is 

 

where Sh, is the number of engagements per hour. This gives a friction surface load: 
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The admissible heat load value  is defined as the acceptable friction surface load per 

unit area. On the basis hereof it is possible to calculate the required friction area A 

 

Table 8.1: Example of admissible heat loadings [4]. 

Clutch type Admissible heat loading 

 

Remarks 

Single disc clutches 1-2 Electro. clutch 

1-4 Pneum. clutch depending on speed 

and size 

Multi-disc clutches 0.2-0.35 Steel/org. Lining, dry operation 

0.1-0.25 Wet operation (oil mist) 

0.2-0.45 Oil Splash 

1-3 Oil inner cooling 

8.1.4 Layout design of friction clutches 

A clutch is basically designed according to the maximum torque to be transmitted and the 

engagement force that produces it, and so the thermal stress is usually the determining factor 

for selecting the appropriate size. The torque to be transmitted is governed by the nominal 

torque of the drive motor and operating machine, where allowance must be made for cyclic 

variations or the torque of tilt (2TAN to 3TAN) in squirrel-cage motors. The engaging and 

disengaging torque of a clutch is generally smaller than the transmittable torque, due to the 

difference in static and dynamic coefficient of friction. In particular, for wet clutches the sliding 

friction coefficient is smaller than the static friction coefficient. 

8.2 Automatic clutches 

Automatic clutches can be divided into two groups depending on the type of activation: Speed-

sensitive Clutches and Directional (One Way) Clutches. Sometimes Overload Clutches and 

Safety Clutches are also classified as automatic clutches. 



 

8.2.1 Speed-sensitive clutches (centrifugal clutches) 

Centrifugal clutches (and hydrodynamic clutches) are used as "soft-start" clutches especially 

where large masses of inertia have to be accelerated to high rotational speeds by relatively small 

driving motors. A centrifuge is a typical example. The characteristic of a centrifugal clutch is 

that the transmittable torque increases with the square of the rotational speed. To prevent the 

clutch from transferring torque already from stand-still, elastic springs are build in to delay the 

engagement. Some characteristics can be shown in the following example: 
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[billedtekst.start]Figure 8.11: The motor and the centrifuge are coupled via a centrifugal clutch. 

The clutch starts engaging at l000rpm (equilibrium between the centrifugal force on the shoes 

and the spring force) so that the transmittable power is exactly 5kW at 2850rpm. The work load 

for the centrifuge is constant = 6Nm (independent of the rotational speed).[billedteskst.slut] 

 

[billedtekst.start]Figure 8.12: Solution to the example.[billedteskst.slut] 

Example: centrifugal clutch for a centrifuge 

Based on the information above, 3 diagrams can now be drawn. See Figure 8.12. In the 

first a rpm-curve for the motor (simplified) is already shown. The task is now, based on simple 

calculations, to draw 

• a curve for transmitted torque to the centrifuge. 

• a curve for the rotational speed of the centrifuge (The centrifuge is supposed to 

reach 2850rpm at the time te). 
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For t = 0 to t = t1 the transmittable torque is a second degree curve. The torque has to 

equal 0 for n = 1000 rpm. 

 
For w = (π/30)2850s–1 is 

 
Now k can be calculated 

 
The second degree curve for the torque crosses the ordinate axis in 

 
The Centrifuge will start when the torque reach a level of 6Nm 

 
from which wc can be calculated 

wc = 197.3s–1 

nc = 1885rpm 

8.2.2 Directional (one-way) clutches, overrun clutches 

Directional clutches are designed to transmit torque in only one direction. However, torque is 

only transmitted between the two clutch-halves as long as the driving part makes an attempt to 

rotate faster than the driven one. This type of clutch is well known from the freewheel in a 

bicycle. As the function for a freewheel clutch is only dependent of the relative rotary motion, 

this type of clutch will also be able to function as a backstop. See description in Figure 7.10. 

This chapter only deals with backstops based on friction elements. Typical types of 

backstops are based on mechanisms with latches or pawls and on mechanisms with friction 

elements. 

For the backstop mechanism shown to the right in Figure 8.13, the braking torque TO has 

to be calculated as a function of the external activation torque Tb and the geometry for the 

components. Balance of moments about the pivotal point B for the shoe and lever assembly 

Tb+Ffa– Fb = 0 (8.44) 

At first, presume that the angle α is so small that the mechanism will act as a brake and 

sliding will take place so that Ff = µF or F = Ff /µ. 
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[billedtekst.start]Figure 8.13: Backstop mechanisms based on two different 

principles.[billedteskst.slut] 

 

 
Now the "braking force" Ff can be calculated as a function of TB 

 
Finally the "braking torque" TO = FFR can be found 

 
For µtan α → 1 then TO/TB→∞, and for µtanα ≥ 1 the "brake" acts as a backstop as long as 

TB ≥ 0. 

When designing backstops the angle α has to be chosen as close down to the limit as a 

secure function allows. That is as close to the line arctan(l/µ) as possible in order to limit the 

contact pressure between the shoe and the drum. 

 

Paper-clip example. This is an example with two rollers, the big one with fixed pivot point. The 

paper is to be placed between the two rollers. This mechanism can be compared with the 

previously described shoe and drum, as the contact point B can be regarded as pivot point. The 

condition of correct function is that 

 
which is the same as 

φ < arctan µ (8.49) 

Please notice that it is the lower value of µ at A or B which is crucial for the proper 

function of the mechanism. 
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[billedtekst.start]Figure 8.14: Limiting line between backstops and brakes.[billedteskst.slut] 

 
[billedtekst.start]Figure 8.15: "Backstop"-mechanism used as paper-clip.[billedteskst.slut] 

8.3 Nomenclature 

a m2/s Thermal diffusivity 

c J/kg°C Heat capacity system 

p0 N/mm2 Pressure extreme between components 

pφ N/mm2 Pressure distribution between components depending on angular 

position 

FV N Bolt force 
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I1, I2 kgm2 Moment of' inertia 

P Nm/s Transmitted power 

Q Nm Dissipated energy in the clutch 

RT,DYN kgm2/s2 Dynamic torsional stiffness of the coupling 

TACC Nm Accelerating torque 

TL Nm "Static" torque load to drive the machine clutch 

λ W/m°C Heat conductivity 

µ – Coefficient of friction 

p kg/m3 Density 

W rad/s Angular speed 
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Chapter 9 Brakes 

The basic function for a brake is to absorb kinetic and potential energy from moving parts 

(translational or rotational).Convert this energy to friction heat and dissipate the resulting heat 

without developing destructively high temperatures. As indicated, a brake can be linear as in 

mechanical lifts, where there has to be a linear safety brake to prevent the chair from falling 

down in case of broken wires, or it can be a brake for slowing down the rotational speed of e.g. 

a wind turbine, and bring it to standstill. Other examples are brakes in cars and in cranes and 

hoists. 

Example: a brake for a hoist A hoist may consist of an electro-motor with integrated brake, a 

gear and a wire pulley. See a sketch in Figure 9.1. The brake can be an electrically activated 

brake automatically brought to function when the current to the motor is switched off. 

However, it is important to know that the brake needs a small amount of time to react (delay 

time), which means that when the stop-button is activated, there will be a short period, where 

the load will be in a free fall as neither the motor nor the brake will be able to prevent this. 

 

[billedtekst start]Figure 9.1: Schematic depiction of hoist.[billedtekst slut] 

In the present calculations we do not incorporate the delay time. The brake torque which 

is necessary to decelerate the rotating masses (when lowering the load) and the translational 

moving masses m have to be 
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In this equation inertia masses and torsional moments are transferred to the braking 

shaft. From the knowledge of the braking time, the braking torque can be calculated. The load 

torque can be transferred to the braking shaft by a simple calculation of moment equilibrium 

 

The transformation of the masses of inertia can be done by means of an energy 

consideration, as the kinetic energy for a rotating mass is:  we have to remove this 

completely when braking to stand-still. As seen in (9.1) all calculations are referred to the motor 

shaft including all masses of inertia 

 

To complete the calculations for the hoist it is absolutely necessary to incorporate the 

delay time as you need to know how far the hook will move after the stop-button has been 

activated. It is possible to be informed about the delay time for braking motors, and as an 

example the delay time can vary from 15 milliseconds to 400 milliseconds, depending on the 

size of the motor and the methods of wiring the brake to the motor. For a particular type and 

size of an Asea breake motor the stopping length for the hook can be up to 300% larger for one 

method of connecting the brake than for another one. (There is of course a difference in price for 

the different methods of wiring the brake to the motor) 

9.1 Drum brakes 

Drum brakes, or more generally: radially activated brakes can be found in many variants. A few 

is shown here 

 

[billedtekst start]Figure 9.2: Variants of drum brakes.[billedtekst slut] 

For radially actuated brakes, an often seen formation concept is the self-energizing 

brake. The level of self-energizing is expressed as an amplification factor λ. 

9.1.1 Self-energizing 

Continuing the calculations from the backstop section for the braking torque: TO as a function of 

the external activation torque TB and for the indicated direction of rotation of the drum, this 

could be written 

 



 

For the opposite direction of rotation, similarly 
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[billedtekst start]Figure 9.3: Schematic depiction of external and internal drum 

brake.[billedtekst slut] 

 

For α = 0 that is a = 0 the two expressions for the braking torque are identical 

 

For α≠0we have a self-energizing or de-energizing effect characterized by the 

amplification factor λ 

 

Please notice that the amplification factor λ is very sensitive to changes in the friction 

coefficient μ if the angle αdesign is chosen close to αlimit. An example will illustrate this: With a μ-

value of 0.6 it 

can be calculated that αlimit = 1.0304. If the designer choose to use an αdesign = 5π/18, it can be 

calculated from (9.7) that a variation in μ-value of 0.6 ±0.1 will cause a variation in the 

amplification factor λ between 2.47 and 6.03. 

9.1.2 Braking torque and friction radius 

Assuming that the pressure distribution is a known function of φ,(Pφ = f(φ)), e.g. as sketched in 

Figure 9.5, the friction torque can be calculated 

 

This torque can be written as 

T = Feμrf (9.9) 

where Fe is the external activating force and rf is determined such that (9.8) and (9.9) will give 

the same value for the torque), rf is called the friction radius. In the next subsection some typical 

examples will be analyzed. 
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[billedtekst start]Figure 9.4: Selection of lead angle αdesign.[billedtekst slut] 

 

[billedtekst start]Figure 9.5: Friction torque and friction radius.[billedtekst slut] 

 

[billedtekst start]Figure 9.6: Wear and surface pressure.[billedtekst slut] 



 

9.1.3 Wear and normal pressure for parallel guided shoe 

The assumption is that the shoe is guided in exact vertical direction and the external force is Fe. 

In Figure 9.6 a dotted line is showing the worn shoe as it looks after some time. The moved 

distance (during the 
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wear) in vertical direction is called Δr0. As is seen in Figure 9.6 the wear in radial direction 

depends on φ in the following way 

Δrφ = Δr0cosφ (9.10) 

It is assumed that normal wear is proportional to friction work and friction work is 

proportional to surface pressure. That is 

pφ = const ·Δrφ (9.11) 

From this result follows that the pressure function can be written as 

pφ=p0cos(φ–ψ) (9.12) 

The p0-value can now be calculated as a function of Fe and the geometry of the brake. 

 

If the pressure distribution is symmetric, ψ = 0, the integration gives 

 

The actual value of the brake torque is 

 

If ψ= 0 the integration gives 

 

This torque can be written by the use of the friction radius as T = Feμrf. The purpose of 

using rf is to simplify the calculations without reducing the accuracy. 

From the knowledge of the relations between Fe and p0 in (9.13) and the two equations 

for the braking torque, the friction radius can now be calculated, ψ = 0 

 

The similarity with the calculation performed for the split muff coupling, where we 

assumed sine- formed pressure distribution, is obvious. With two half parts of the coupling and 

an angle of contact of , the friction torque is 

 

It can also be seen that rf/r is the fraction between the arithmetical (real) sum of friction 

forces on radius r and the geometrical sum (vectorial) on the radius rf. 
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[billedtekst start]Figure 9.7: rf/r for symmetrical pressure distribution.[billedtekst slut] 

9.1.4 Wear and normal pressure for non-pivoted long shoe 

Figure 9.8 shows a brake shoe in contact with a drum. As the shoe wears, it pivots about B. For a 

rather extreme amount of wear an arbitrary point 1 moves to 2. The actual wear for the point 1 

is represented by a line from point 1 to the drum surface in the direction of the drum center O. 

During the wear the shoe has rotated an angle dβ, and this angle is of course the same for all 

points on the contact surface. 

 

[billedtekst start]Figure 9.8: Brake arm with non-pivoted long shoe.[billedtekst slut] 

From the figure it can be seen that the wear in radial direction is 

 

As h and dβ both are constant over the wear surface the wear will always be shaped as a 

sine- function. According to this, the wear will obtain its maximum value for 
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At the same angle we will find the maximum pressure and the pressure function can now be 

written 

Pφ = Pφ=π/2 sin φ (9.20) 

Design hint. By adjusting the placement for the pivot point, it is often possible to achieve a 

symmetrical pressure distribution as for the parallel guided shoe in Figure 9.6. This is 

advantageous because of the best utilization of the linings. 

About calculation method. The analysis of the above shoe pressure could be done much easier 

by noticing that for a rotation (dβ) around a pivot point (B), the component of movement in an 

arbitrary chosen direction (OT) will be given by the distance from the pivot point to that 

direction (h sin φ) times the rotation angle (dβ). Consequently, the displacement in the OT-

direction for an angular rotation dβ will be 

hdβ · sin φ (9.21) 

9.1.5 Wear and normal pressure for pivoted long shoe 

The pivoted long shoe is often designed symmetrically around OE (see Figure 9.9), which 

results in the same braking torque for both directions of rotation. This type of brake will also 

normally be built with a shoe on both sides of the braking drum in order to reduce the side 

force on the shaft. 

When designing the brake it is advantageous to place the pivot point as close to the 

drum as practical possible to reduce the tendency to "capsize". 

During the braking process the sum of the moments attacking the shoe will balance. This 

is obtained automatically by the surface pressure distribution. The pressure distribution and the 

friction radius can now be calculated. 

 

[billedtekst start]Figure 9.9: Brake arm with pivoted long shoe.[billedtekst slut] 

At first the moments around pivot point E is calculated with the shown direction of 

revolution 

 

or after insertion of x and y 

 



 

In this equation dN can be calculated as a function of width of the lining w and the drum 

radius r. 
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dN = pφwrdφ (9.24) 

With this inserted in (9.23) we have 

 

The pressure distribution as a function of φ is unknown, but (as earlier) supposed to be 

proportional with the wear and through that a function of cosines, p0 is the symbol for the 

surface pressure, where this has its maximum, p is presumed to have its maximum value for the 

angle ψ. 

Pφ = P0 cos (φ– ψ) (9.26) 

We first calculate the arithmetic sum (Ff) of the friction forces at radius r. From this can 

p0 and pφ be calculated. 

 

This expression for pφ is inserted in (9.25) and the angle φ can now (after some 

rewriting) be calculated to 

 

For the following data (a = 1.2r, β = π/2 and μ = 0.75) ψ can be calculated to 

approximately 4π/45. 

If it is possible to bring the numerator in the fraction for ψ to zero, which will bring the 

angle ψ to zero, we would have obtained a symmetrical surface distribution. We also discover 

that the pivot point in that case is placed in the distance rf from the center of the drum. From 

Figure 9.7 we can see that for practical reasons the angle θ has to be rather high. As an example 

an angle of θ = 7π/9 and a distance a = rf of 1.218r will cause the angle ψto be zero. 

During the wear of the lining the distance a will decrease, which will cause a heavier 

wear of the lining at one of the shoe ends. Which one? 



 

9.2 Disc brakes 

Today hydraulic activated calliper disc brakes is the most commonly used type of brake for cars 

and motor cycles. Other applications where disc brakes are used almost exclusively are as 

parking and emergency brakes for wind turbines. 
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[billedtekst start]Figure 9.10: Calliper disc brake, hydraulic operated (Manufacture: 

Girling).[billedtekst slut] 

The design principle is simple. The basic component is a cast ventilated disc, where air 

ventilation through the interior passages provides substantial additional cooling. The fixed 

calliper has hydraulic activated cylinders with brake pads on both sides of the disc. The 

activating force for a disc brake is substantially bigger than for a drum brake that make a brake 

amplifier necessary for cars. 

9.3 Cone brakes 

By using a cone brake the activating force will be less than for a disc brake for the same braking 

torque, but the cone angle must not be chosen too small to secure a safe disengagement. 

 

[billedtekst start]Figure 9.11: Simplified principle drawing of a cone clutch, the same principle 

is used in the brake.[billedtekst slut] 
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A typical application is in hoists. For example in electrical chain hoists, where a helical 

compression spring will be activated and loaded in the same instant the motor is started. The 

magnetic field pulls the rotor axially into the stator by which the brake is released. On one hand 

it is required that the spring force is so large that the payload on the hook can be brought to 

stand-still quickly, and on the other hand the rotor should be able to overcome the spring force, 

when the motor is started. 

Cone brakes are used in another well known application: the synchromesh in 

automobile gearboxes. Here it is used not as a cone brake, but as a cone clutch to synchronize 

the rotational speed for two shafts, before a claw coupling can engage and take over the torque 

transmission. 

The cone brake uses wedging action to increase the normal force on the brake lining. The 

area of a surface element is 

 

where α is the half-cone angle. The normal force on the small area element is 

dFe = pdA (9.32) 

The actuating force is the thrust component dW of the normal force dFe, so that 

dW = dFe · sin α = pdA · sin α = prdrdθ (9.33) 

Now we can express the actuating force 

 

and finally the braking torque is 

 

9.3.1 Uniform pressure model 

For uniform pressure distribution where p = p0 the integration of (9.34) gives 

 

Similarly the torque is found as 

 

or 

 



 

9.3.2 Uniform wear model 

Assuming uniform wear with pr = C (C is a constant) gives the actuating force as 

 

and the torque is 
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9.4 Band brakes 

The band brake consists of a band pulled over a drum. By pulling in one end of the band with 

the force F2, the brake is activated. When the drum rotates as shown in Figure 9.12, the force will 

increase over the contact angle from a value F2 to a higher value F1. The braking torque will 

consequently be (F1 – F2)r. 

 

[billedtekst start]Figure 9.12: Band brake sketch and forces on an infinite (small) 

element.[billedtekst slut] 

In order to calculate the force F1, the forces on an infinite band element positioned an 

angle φ from the beginning of the contact angle α is analyzed. Forces are applied to a small cut-

out element so that the increase in force (dF) is calculated in the same direction as the increase in 

angle (dφ). 

Projection on the tangent direction 

dF = –μdN (9.42) 

Projection on the radius direction 

 

In this equation two simplifying assumptions are to be introduced 

 

 

In that way (9.43) is reduced to 
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dN ≈ Fdφ (9.46) 

This expression for dN is inserted in (9.42) 

dF = –μFdφ (9.47) 

or after separating the variables 

 

Integrated over the complete covering angle α we find 

 

This last equation is normally called Eytelwein’s equation. 

Typical industrial applications were previously big cranes. Today only few applications 

are known. One is for automatic gearboxes for cars. 

On the other hand the principle of Eytelwein is known of all sailors. He knows how to 

sling a rope a couple of times around a bollard on the quay or around the bitt on the ship and 

by this he is able to control the pull in the cable and when necessary let go. 

9.5 Nomenclature 

a mm Linear dimension on brake arm 

b mm Linear dimension on brake arm 

d mm Inner diameter of disc 

r mm Radius of brake drum 

rf mm Friction radius. (Theoretical value.) 

P N/mm2 Pressure 

w mm Width of brake 



 

z – Number of teeth on gear 

C N/mm Constant 

D mm Outer diameter of disc 

Ekin Nm Kinetic energy in a system 

F N Force 

Fe N External force 

F1 N Large force in brake band (tight part) 
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F2 N Small force in brake band (slack part) 

Ff N Friction force on brake drum 

I1,I2 kgm2 Moment of inertia 

N N Normal force on brake drum 

T Nm Torque 

TB Nm Actuation torque on brake 

W N Actuation force 

α rad Angle 

λ – Amplification factor 

μ – Coefficient of friction 

ψ rad Angular position of maximum pressure 

w rad/s Angular speed 

wL rad/s Angular speed of load 
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Side 201 

Chapter 10 Belt Drives 

10.1 Introduction 

The two most common speed reduction mechanisms in industry are belts drives and gears. The 

efficiency of a belt transmission is generally less than that of a gear transmission. 

Table 10.1: Comparison between power transmission systems (Rough approximations). 

Drive type Gear Chain Timing 

belt 

V-belt Flat belt 

Power transmission through contact contact contact friction friction 

Max power transmission [kW]      

Normal 3000 200 100 100 150 

Extreme 70000 4000 400 4000 4000 

Max torque [Nm] 108 106 104 104 104 

Max speed v [m/s]      

Normal 50 10 40 25 60 

Extreme 200 40 70 40 120 

Max ratio      

Normal 7:1 6:1 8:1 8:1 5:1 

Extreme 1000:1 10:1 12:1 15:1 20:1 

Efficiency [%] 93 - 99 94-98 93-98 92 - 94 94-98 

Power transfer between gears is enabled by the normal action/reaction force at the tooth 

contact, and friction plays only a minor role. The transfer of power in a v-belt and a flat belt 

drive requires friction. The tensions Fmax and Fmin in the two strands cause a normal pressure 

over the belt-pulley contact, and the corresponding distributed friction force gives a moment 

about the pulley center, which equilibrates the shaft torque T. 

For gears, the speed reduction ratio and the torque amplification ratio are equal to the 

radius ratio, so that the output power equals the input power and the efficiency is close to 100%. 



 

The speed ratio across a pair of gears always equals the ideal ratio, because of the kinematic 

restrictions (a so-called positive drive), whereas sliding friction results in a torque ratio, which 

is less than ideal. 

If the creep between belt and pulleys is neglected the speed reduction ratio and the 

torque amplification ratio are equal to the radius ratio for a belt transmission as well. For a 

practical belt drive the torque ratio equals the ideal ratio, but creep results in a larger speed 

reduction ratio than the ideal. The creep is 
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due to belt elements changing length as they travel between Fmax and Fmin, and since the pulley is 

rigid there must be relative motion between belt and pulley. 

10.1.1 Reasons for choosing belt drives 

Compared to other types of mechanical transmissions the following advantages can be 

mentioned: 

• Low maintenance cost. (No lubrication needed) 

• Within reasonable limits: Free choice of ratio and center distance. 

• Easy to install. Low requirement to shafts line-up. 

• High degree of reliability. 

• Low noise level. 

• Built in elasticity in the transmission. 

• Easy handling of spare parts. 

• Inexpensive. 

10.2 The belts 

Modern flat belts are of composite construction with cord reinforcement. They are particularly 

used for belt conveyors that are typically used to convey bulk material of all kinds. The smallest 

conveyors are transporting a few grams per hour whereas the biggest may transport more than 

1000 tons per hour. 

 

[billedtekst start]Figure 10.1: Schematic illustrations of different types of V-belts.[billedtekst 

slut] 

Flat belt power transmission drives can be used up to 4000kW, but causes very high 

loads to the shaft and the bearings. The V-belt drives causes less shaft forces due to the V-

grooved pulleys, and due to the newer wedged type of V-belts, the space requirements 

compared to a gear transmission are less dramatic and they are normally much cheaper than the 

toothed gear. 



 

If a single V-belt is inadequate for power transmission then multiple belts and 

corresponding multigrooved pulleys are used. 
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V-belts normally comprise cord tensile members located at the pitch line, embedded in a 

softer matrix that is in turn embedded in a wear resistant cover. 

The groove semi-angle lies usually in the range 4π/45 ≤ γ ≤ 19π/180. 

V-belts are available in a number of standard cross-sectional sizes, designated in order of 

increasing size A, B, etc, for classical V-belts and as SPA, SPB, etc. for the narrow type of belts. 

Each size is suitable for a particular power range. 

V-belts are manufactured in certain discrete standard pitch lengths. The power demand 

very often necessitates a number of belts on multi-grooved pulleys. 

Before a belt drive can transmit a torque and thereby power, an initial tension F0 must be 

applied to the belt by the shafts being pulled apart and then fixed in position. 

Drive commences by applying a torque T1 to the shaft of the small driving pulley, 

causing it to rotate at a steady speed n1 [rev/s]. The tension in the ’tight’ straight strand will 

exceed F0, while the tension in the ’slack’ strand will become less than F0. This tension difference 

applies a torque T2 to the driven pulley that rotates at uniform speed n2. 

10.3 Belt drive geometry (kinematics) 

A typical belt drive is illustrated in Figure 10.2. The diameter of the small driving pulley is d1 

and that of the large driven pulley is d2. 

 

[billedtekst start]Figure 10.2: A typical belt drive.[billedtekst slut] 

The pulley diameters and belt length are discrete variables giving a theoretical center 

distance a. The drive design must be capable to allow for belt installation and initial tightening. 

If we express the speed of the belt on each pulley as function of the number of 

revolutions (n1[rev/s] and n2[rev/s]) we find 

υ1 = π(d1 + t)n1 (10.1) 

υ2 = π(d2 + t)n2 (10.2) 

where t is the thickness of the belt. We may now define the creep ψ as 
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v2 = v1(1 – ψ) (10.3) 

which express the reduction in the speed of the belt on the driven pulley as compared on the 

driver pulley. By rearranging we find 

 

The creep is not to be confused with sliding. The reason for the creep is that the belt 

tension has a different value on each side of the pulley and therefore different elongation. This 

transition of elongation takes place during the belts contact with the pulley. The size of the 

creep is in the order of a few percent (say 2%). 

We may now express the speed ratio 

 

If we now make the assumption that the creep is negligible and the thickness of the belt 

is small as compared to the diameter of the pulleys, we can simplify and find 

 

It also follows from the assumption of zero creep that the belt speed can be 

approximated as 

υ ≈ πd1n1≈ πd2n2. (10.7) 

Normally the belt speed v should be less than 30m/s for the usual cast iron pulley 

material. Most V-belts are designed to have optimum performance at speeds of around 20m/s. 

The length of the belt can be found by using Figure 10.2. The angles a\ and a2 is 

α1 = π – 2β α2 = π + 2β (10.8) 

this leads to the length 

 

reformulation gives 

 

The angle β can be derived from 
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The presented equation are useful, when we have d1, d2 and a and want to find L. If 

instead L is known and we want to find a the same formulas could be used. However often you 

will find alternative formulas based on the assumption 

 

Using (10.12) in (10.11) and (10.10) we have 

 

which lead to the following second order polynomial in a 

 

Solving (10.13) with respect to a gives 

 

where 

 

10.4 Belt forces 

Following the geometry consideration we now use force equilibrium to find the maximum 

possible transmitted torque. 

When a rope is wrapped around a stationary cylinder, it can remain in equilibrium 

although its ends are pulled with different forces, provided that one end is not pulled 

excessively. If the difference in the applied forces is sufficient to overcome the friction slip 

occurs and the rope slides around the cylinder. The belt behaves in a similar way and this can 

be used to find out the friction limited torque capacity. 

10.4.1 Flat belt 

Consider first a flat belt wrapped around a stationary pulley of radius d1/2 as shown in Figure 

10.3, the contact extending from φ = 0 on the slack side where the force is F2 to φ = α1 on the 

tight side where the force is F1, i.e. F1 > F2. We initially assume that the belt slide on the pulley. 

Because the belt is sliding on the pulley, we know the friction force and may express the 

transmitted torque 
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[billedtekst start]Figure 10.3: Free body diagram of one pulley, and a infinitesimal piece of the 

belt. It is assumed here that the belt slip counter clockwise on the pulley, which result in the 

shown friction force μdN.[billedtekst slut] 

 

Initially, we assume that the belt speed is so low that acceleration can be neglected. From 

the small cut-out of the belt shown in Figure 10.3 the force equilibrium in tangential direction is 

 

This can be reduced to 

dF = μdN (10.19) 

Equilibrium in the radial direction gives 

 

This can be reduced to 

Fdφ = dN (10.21) 

Combining (10.19) and (10.21) gives 

 

integrating over the contact angle α1 gives Eytelwein’s equation 

 

or 



 

Side 207 

 

In the above deduction it is assumed that the driving pulley, with index 1, is the smallest 

one, giving the smallest wrap angle (α1 < α2). If this is not the case the angle α1 should be 

substituted by α2. Correspondingly, the coefficient of friction may be different for the two 

pulleys. In (10.24) we have the theoretical maximum difference between the force on the slack 

and tight side, i.e., if we express the maximum and minimum force as and Fmax and Fmin 

respectively we have 

 

10.4.2 V-belt 

If we now consider a V-belt the situation is slightly changed. The element contacts the two 

inclined sides of the groove, giving rise to normal reactions dN shown in Figure 10.4 together 

with a friction force μdN at each contact. Since the two normal reaction components lying 

parallel to the pulley shaft in Figure 10.4 equilibrate one another, the resultant of the two 

contacts appear as in Figure 10.4. Force equilibrium gives 

 

[billedtekst start]Figure 10.4: Belt forces.[billedtekst slut] 

 

and 

 

these two equations yield 

 

where μ is the coefficient of friction between belt and groove. 

Integrating over the contact angle α1 gives 

 



 

or 
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the same comment as under the flat belt concerning the validity of (10.30) applies, i.e. with 

respect to the wrap angle and the coefficient of friction. 

10.4.3 Including inertia 

Flat belts For belt transmissions operating at higher speeds the "useful belt tension" is 

influenced by the centrifugal forces acting on the belt, see Figure 10.5. Due to the centrifugal 

force the tension in the belt increases and the contact force between belt and pulleys decreases. 

 

[billedtekst start]Figure 10.5: Free body diagram and kinetic diagram of small cut-out of 

belt.[billedtekst slut] 

The force balance along a tangent to the pulley, including the centrifugal effect, gives 

 

which again is reduced to 

dF = μdN (10.32) 

since there is no angular acceleration normally (assumed here). 

The mass of the infinitesimal belt piece in Figure 10.5 is 

 

where w is the width of the belt, t is the thickness and ρ is the density of the belt material, q = w t 

ρ is defined as the mass pr. length of the belt. 

The force equilibrium in radial direction is 

 

This can be reduced to 

Fdφ – dN – qv2dφ = 0 (10.35) 

and 



 

Side 209 

 

from which the variables can be separated and integrated 

 

this is called the extended Eytelwein’s equation. 

V-belts For V-belt transmissions the same equation can be used with implementation of a new 

artificial friction coefficient μe with 

 

as the effective coefficient of friction which reflects the amplification of the actual coefficient μ 

by the wedging action in the groove of angle γ. 

It is important to note that the tension in the belt is F1 and F2, but the force that acts on 

the pulley is reduced by the speed of the belt to F1 – qυ2 and F2– qυ2 respectively. 

Large pulleys and tension ratios are preferred, but tension ratios are limited by the 

friction coefficients and wrap angles that are encountered in practice. 

Drive capacity may be increased by increasing the initial tension, but this will in turn 

reduce the belts fatigue live. Large pulleys reduce loads, but the cost of the pulleys themselves 

increases with size. The manufacturers of electric motors recommend minimum pulley 

diameters for acceptable motor bearing lives. 

In the most simple setup a drive comprises two pulleys, which may have different 

values of friction coefficient μ and wrap angle α. In order to fully exploit the friction capability 

between the belt and the pulley, it is important that 

F2≥0 (10.41) 

It is common practice to specify the pretension as 

 

If the pretension level is sufficient the maximum possible transmitted torque is given by 

 

and the forces must fulfil 
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Where 

(μeα)min = min(μeα1, μeα2) (10.45) 

and in the case of v-belt drive we must use 

μe = μ/ sin γ (10.46) 

If μe is the same for both pulleys, as is normal when both pulleys are grooved, then the 

smaller pulley will be limiting since α1≤ α2. 

The maximum power that can be transmitted by a single belt is 

 

If we alternatively assume a number z of equally size belts we have 

Pmax = z(Fmax – Fmin)υ (10.48) 

or 

 

This relation is insufficient for determining Fmax, Fmin individually for a given power per 

belt (Pmax/z) and velocity υ. However if we apply the extended Eytelwein’s equation we 

achieve 

 

where 

 

it is seen that these expressions relate to the boundary of slip and therefore the applied real 

values should be less. 

From a design point of view it is of interest to know the radial force acting on the pulley 

shafts. This is found by vectorial summation of the belt forces. In Figure 10.6 a free body 

diagram of a pulley is shown. The force from the belt acting on the pulley includes the 

contribution from the speed of the belt. The resulting forces are termed F'and F'. 

The total load on the shaft is  or expressed in the resulting forces from the 

belt on the pulley 
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[billedtekst start]Figure 10.6: Free body diagram of pulley.[billedtekst slut] 

or alternatively by defining the ratio between the loads  and the difference  as 

 

i.e., expressed as a number (K) times the load difference. We also note that the load on the shaft 

is largest at stand still. 

10.5 Belt stress (flat belt) 

The belt experience a variation in the stress as it goes through a full revolution. In this section 

the different contributions to the stress is discussed. 

Pretension of the belt results in a stress 

 

where A = w t is the cross sectional area of the belt. We have previously shown that there is a 

contribution to the stress from the speed of the belt. This stress is 

 

The stress (10.56) can be considered to be constant in the belt. There must also be a stress 

difference that enables the torque transfer. This stress difference is 

 

The forces in the two free spans of the belt are F1 and F2. The forces on the pulleys are 

defined as  and  and the corresponding stresses 

 

it then follows that 
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From these equations we find that (σd can be given as 

σd = σ1 – σ2 (10.61) 

On the free slack part of the belt we have the stress a2 + ac and on the tight free part have 

the stress σ1+σc = σ2+σc+σd, i-e. the stress must build up on one pulley by σd and reduce by the 

same amount on the other pulley. This is the cause of creep. 

Finally, there is also bending stresses in the belt due to bending around the pulleys. This 

stress is directly related to the diameters of the pulley and therefore different on the two pulleys 

 

where E is the modulus of elasticity of the belt and y is the distance from the pulley, which leads 

to the maximum values in the outer fiber 

 

 

[billedtekst start]Figure 10.7: Principal graph of stress in belt, it is assumed that the transition of 

creep is linear.[billedtekst slut] 

By adding up all the contributions we may show a principal graph of the stress in the 

belt. In principle the stress cycle shown in Figure 10.7 gives a double cycle of loads with each 

complete rotation that should be dealt with in fatigue calculations of the belt. The cycle is 

however, highly related to the individual design of the belt drive that may not be as simple as 

illustrated here. Specific calculations should therefore be done for actual designs. 
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10.6 Optimization of belt-drives 

From F0 = (F1 + F2)/2 and (10.39) together with the power given as 

P = (F1–F2)υ (10.64) 

we may express the limiting power in different ways. 

 

Using (10.65) we may express the optimal belt speed for given pretension F0 by using that 

 

which gives 

 

If instead the tension load F1 is to be minimized we rewrite (10.66) to find 

 

which gives 

 

Finally, it is possible to minimize the bearing load. A crude assumption of the bearing load is 

 

Rewriting (10.65) we get 

 

or that 

 

From (10.74) we see that in order to minimize the bearing load we have to maximize 

(μeα)min and maximize υ. 
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10.7 Plot of the belt forces 

In many cases a plot of the involved belt forces is very illustrative. Universally the following 

equilibrium holds for all configurations 

 

Secondly we can express the force on the slack part of the belt as 

 

where ϕ is a givenconstant that depends on the configuration.  is the belt preload. Finally the 

belt forces must follow Eytelwein’s equation 

 

Using (10.75) and (10.77) the limit for  are given by 

 

Case I. In this case the mean value of the belt load is constant and equal to  this corresponds 

to the case where there is no active tightening taking place. For this case the following apply 

 

In Figure 10.8 the resulting forces is given as a function of P/v. 

Case II. In this case there is constant force in the slack part of the belt, i.e.  For 

this configuration the following apply 

 

In Figure 10.9 the resulting forces is given as a function of P/v. 
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[billedtekst start]Figure 10.8: Belt forces as a function of P/v for the specific case ϕ = –

1/2.[billedtekst slut] 

 

[billedtekst start]Figure 10.9:Belt forces as a function of P/v for the specific case ϕ = 0.[billedtekst 

slut] 

General case For the general case ϕ can have a positive or negative value. Using (10.79) in 

(10.76) we find 

 

From this the limit to the power, Pmax, assuming a given speed, v, can be found. 

Assuming that P is given result in a minimum speed, υmin 

 

In Figure 10.10 two examples of the general case is shown. If we select ϕ > I/(eμα – 1) then 

no preload is needed as seen in Figure 10.10. 

Bearing loads At stand still we have the following two belt loads 
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[billedtekst start]Figure 10.10: Two examples of belt forces for the general 

case.[billedtekst slut] 

where 

 

From the belt forces the bearing loads can be found. At idle, i.e. when P = 0 and v ≠ 0the 

two belt loads are 

 

When the maximum power, Pmax, is transmitted for a given speed, v, we have 

 

The minimum bearing loads are achieved for the specific case 

 

For Figures 10.8 to 10.10 it should be noted that P/v also indicates the transmitted torque since 

 

where r is the radius of the driving pulley. 

10.8 Nomenclature 

a mm Center distance between pulleys 

d1 mm Diameter of driving (small) pulley 

d2 mm Diameter of driven (large) pulley 

i – Speed ratio for the pulleys 
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kφ – The drive property 

n1 rev/s Rotational speed of pulley 1 

n2 rev/s Rotational speed of pulley 2 

q kg/m The belt’s mass density per unit length 

t m The belt thickness. 

υ m/s Belt speed 

w m Belt width 

z – Number of belts on a pulley 

E N/m2 Modulus of elasticity 

F0 N Initial tension in belt 

F1 N Large belt force (tight part) 

F2 N Small belt force (slack part) 

 N Large belt force on pulley (tight part) 

 N Small belt force on pulley (slack part) 

Fmax N Maximal belt force (tight part) 

Fmin N Minimal belt force (slack part) 

Ft N Total load on shaft 

L mm Length of belt 

N N Normal force on belt from pulley 

P W Transmitted power 

Pmax W Maximum possible transmitted power 

Tmax Nm Maximal torque on driving pulley 



 

T'2 Nm Torque on driven pulley 

α1 rad Wrap angle on driving pulley 

α2 rad Wrap angle on driven pulley 

β rad Angle between belt and line between pulley centers 

γ rad Groove semi-angle on pulley 

 μ 

 

– Coefficient of friction between belt and pulley 

μe – Effective coefficient of friction between belt and pulley 

w rad/s Angular speed 

ρ kg/m3 Mass density of belt 

ψ – Creep 

σ0 N/m2 Belt stress due to pretension 

σc N/m2 Belt stress due inertia 

σd N/m2 Belt stress due to transmission of torque 

σ1 N/m2 Belt stress in tight part 

σ2 N/m2 Belt stress in slack part 

σb N/m2 Bending stress in belt 
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Chapter 11 The geometry of involute gears 

11.1 Introduction 

Of all the many types of machine elements that exist today, gears are among the most 

commonly used. The basic idea of a wheel with teeth is extremely simple and dates back several 

thousand years. It is obvious to any observer that one gear drives another by means of the 

meshing teeth, and to the person who has never studied gears, it might seem that no further 

explanation is required. It may therefore come as a surprise to discover the large quantity of 

geometric theory that exists on the subject of gears, and to find that there is probably no branch 

of mechanical engineering, where theory and practice are more closely linked. Enormous 

improvements have been made in the performance of gears during the last two hundred years 

or so, and this has been due principally to the careful attention given to the shape of the teeth. 

The theoretical shape of the tooth profile used in most modem gears is an involute. When 

precision gears are cut by modem gear-cutting machines, the accuracy with which the actual 

teeth conform to their theoretical shape is quite remarkable and far exceeds the accuracy that is 

attained in the manufacture of most other types of machine elements. 

 

[billedtekst start]Figure 11.1: Gear types: a) Spur gear, b) Helix gear, c) Internal gear 

pair.[billedtekst slut] 

11.2 Internal and external gears 

A spur gear is cut from a cylindrical blank, with teeth that are parallel to the gear axis. If the 

teeth face outwards, the gear is called an external gear, and if they face inwards, the gear is 

known as an internal gear. This chapter deals with the subject of external gears. 

Gears are highly standardized products and this chapter mainly refers to the German 

standard DIN 3990 [2] and the corresponding ISO standard [3], 
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[billedtekst start]Figure 11.2: Gear types: a) Rack and pinion, b) and c) Bevel gear 

pair.[billedtekst slut] 

 

[billedtekst start]Figure 11.3: Gear types: a) Worm gear, b) Hypoid gear. 

11.3 Gear ratio 

When describing gears, the term angular speed ratio is often used to describe the relation 

between the angular speed for the driving wheel, wA, and the driven wheel, wB,. 

 

where TA is the pitch radius (see Figure 11.4) of the driving wheel and rB is the radius of the 

driven wheel. In some textbooks one can also find the inverse definition of the angular speed 

ratio. 

One can also define a mechanical advantage or torque ratio given by 

 

where TA is the torque on the driving wheel, i.e. the input torque, and TB is the torque on the 

driven wheel, i.e. the output torque. However, in conjunction with the geometrical calculations, 

it is today primarily the relation between the number of teeth on the larger gear wheel, z2, and 

the smaller gear wheel, zi, that is used, this is defined as the gear ratio. The gear ratio is 

therefore given by 

 

The smaller gear wheel is often called the pinion. It should be noted that the gear ratio u is equal 

to the magnitude of either i or tr depending on which one is numerical larger than 1. 



 

11.4 Gears in mesh 

The pair of gears 1 and 2, turning around two fixed points 01 and 02 meet in point P. For the 

teeth is the current speed in point P 
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[billedtekst start]Figure 11.4: Gear nomenclature (Simplified geometry).[billedtekst slut] 

 

 

[billedtekst start]Figure 11.5: Meshing gears.[billedtekst slut] 

In order for the gears not to move towards or away from each other, the velocity 

components in the direction normal to the teeth, along N1 N2, must be the same for the two 

gears. This means that 

 

or 
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At the same time we have 

 

and 

 

By inserting (11.8) and (11.9) in (11.7) we have 

rb1w1= –rb2w2 (11.10) 

or 

 

Since O1 N1 and O2N2 are both perpendicular to the line of action, they each make the 

same angle with the line of centers, and we find that 

 

We can therefore conclude that the condition for constant angular speed ratio w1/w2 is, 

that the gears common normal in the present point, constantly goes through the point C, which 

divides the center line O1O2 in the constant ratio rw2/rw1. 

The angular speed ratio will be 

 

The two radii rw1 and rw2 are called the pitch radii. It should be noted that the formulas of 

the present section is for an external gear set, with an internal gear set the formulas are 

identical, but the sign of should be changed. This is the reason for the plus minus sign in (11.1) 

and (11.2), i.e., it relates to an internal or external gear set. 

11.5 Tooth shapes 

Usable gears must fulfil the following conditions in order to be of interest: 

• The two gear wheels must have the same "distance" (pitch) between two 

following teeth. 

• Furthermore the space between two teeth must be bigger than (or equal to) the 

tooth thickness on the other gear wheel. 

• At last the conclusive condition mentioned in the previous section is to be 

fulfilled too. 

These conditions can be fulfilled by several tooth shapes from which well-known types 

are: cycloid, Novikov and involute. Only the involute type will be explained here. 
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11.6 Involute tooth shape basics 

For involute gears the tooth flank is shaped as an involute to a circle. As the circle radius 

increase the tooth shape tend to be straighter. A common reference for involute gears is the 

(basic) rack that can be described as a part of an involute gear with an infinite number of teeth. 

That is a gear wheel which radius is infinite. A reference of that type is relative easy to produce 

to a very high degree of precision as the tooth shape is absolutely straight. 

 

[billedtekst start]Figure 11.6: Basic involute geometry.[billedtekst slut] 

For the point P at the involute curve the curvature radius is given by the distance PN 

and the curvature center is in N. 

Also to observe is that the length of the arc AN is equal to the length of PN. 

 

=rb(tanα* – α*) inv α* = tan α* – α* (11.17) 

11.7 Basic rack 

The basic rack, can be constructed as a gear wheel with an infinite number of teeth. Thus will all 

radii be infinite, and the circles will be straight lines. On the basic rack, the involute is a straight 

line, perpendicular to the line of action and the tooth flank will be a plane. 

The basic rack is easy to manufacture to a high degree of precision. It is used as a 

reference profile for involute teeth, and gear wheels can be manufactured with a tool shaped as 

a slightly modified basic rack. 
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[billedtekst start]Figure 11.7: Tool shape for producing involute gears.[billedtekst slut] 

 

[billedtekst start]Figure 11.8: Basic rack.[billedtekst slut] 

11.8 Pitch and module 

The standard pitch circle diameter d is given in terms of the basic rack pitch p (circular pitch) 

 

For a system of gears conjugate to a particular basic rack, it would therefore be necessary 

to specify only the value of the pitch p, which is the same for every gear in the system, and we 

would then use (11.18) to calculate the standard pitch circle diameter of each gear. This method 

of specification was in fact used in the past, and gears in which the circular pitch is specified as 

a convenient length are known as "circular pitch gears". However, they are seldom made today, 

as they have one slight disadvantage. If the value of the circular pitch is chosen as an integer 

number, the standard pitch circle diameter is always an inconvenient size, due to the presence 

of the factor π in (11.18). It has been found more practical to design gears in which the standard 

pitch circle diameter is an integer number. With this consideration in mind, we introduce a 

quantity called the module m, defined in terms of the basic rack pitch 
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We now combine (11.18) and (11.19), in order to express the standard pitch circle 

diameter in terms of the module 

d = mz (11.20) 

and, since once again the circular pitch of the gear is equal to the basic rack pitch, a 

relation between the circular pitch and the module can be found immediately from (11.19) 

p = πm (11.21) 

The module, which we have shown is proportional to the circular pitch, is used not only 

in the calculation of the standard pitch circle radius, but also as a measure of the tooth size. 

When two gears are meshed together, they must clearly have teeth of approximately the same 

size, and in practice they are designed with the same module m. In other words, the two gears 

are both conjugate to the same basic rack. 

In countries where distances are measured in inches, not in mm, a system using the 

diametral-pitch (pd) and circular-pitch (p) is used instead of the module. 

 

11.9 Under-cutting 

At small numbers of teeth, the rack will penetrate the base of the teeth, and under-cutting will 

occur. 

 

[billedtekst start]Figure 11.9: Under cutting.[billedtekst slut] 



 

 

[billedtekst start]Figure 11.10: Limiting the under-cut.[billedtekst slut] 

Under-cutting will occur when the contact point is not between point C and point N1 on 

the line of action, i.e., when there is contact further out than point N1 on the line of action. So to 

avoid undercutting, l2 must be smaller or equal to l1, as shown 011 the Figure 11.10. 

l2 = m (11.23) 

 

From the (11.23) and (11.24) we find that 



 

Side 226 

 

The minimum number of teeth before under-cutting will occur, zmin, is calculated as z 

rounded up, until the nearest integer. For α = Π/9, zmin = 17. Under-cutting should be avoided, as 

the base of the teeth is weakened. How to do this, is explained below. 

11.10 Addendum modification (profile shift) 

Addendum modification is achieved by moving the rack the length xm, outwards from the 

wheel center, x is called the addendum modification factor. The sign for the addendum 

modification factor is defined so that positive addendum modification results in a thicker tooth. 

This should be understood as, the tooth base will be thicker, while the tooth tip will be thinner. 

 

[billedtekst start]Figure 11.11: Addendum modification.[billedtekst slut] 

At positive addendum modification, the minimum number of teeth to avoid under-

cutting is changed so a smaller gear wheel without under-cutting can be obtained. 

11.11 Tooth thickness 

As a starting point, the tooth thickness, s, is calculated for the basic pitch circle. 

 

The tooth thickness on radius ry is calculated from the tooth thickness on the pitch circle 

r. 

 



 

Side 227 

 

[billedtekst.start]Figure 11.12: Tooth thickness. (Basic pitch circle drawn with wrong 

radius for clearness in figure. Compare to Figure 11.11).[billedtekst.slut] 

 

The angle αy is defined by the two expressions for the base circle radius rb 

rb = r cos α = ry cos αy (11.30) 

 

The tooth thickness at the tip is now found by inserting ra in place of ry. When designing 

gears, it is common to select the addendum modification, so that the tooth tip arc length sa ≥ 

0.25m, however, for carburized gears sa ≥ 0.4m. 

11.12 Calculating the addendum modification 

For two gear wheels, defined by the module, m, the number of teeth, z1 and z2, and 

manufactured with a rack, in accordance with ISO/R 2334, the sum of the addendum 

modification factors, x1 + x2, for a given center distance, is calculated as follows: The sum of the 

thickness of the teeth on the pitch circle, sw1 and sw2, equals the pitch on the same circle, pw 

sw1 + sw2 = Pw (11.32) 
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furthermore, we have 

 

By insertion in (11.32) 

 

please notice that the above calculation is based on the assumption that no clearance exist 

between the teeth. In practice, meshing gears must be calculated with clearance to allow oil or 

grease lubrication. 

 

[billedtekst.start]Figure 11.13: Relations between center distance, radii and 

angles.[billedtekst.slut] 

The transverse pressure angle αw is found by 

 

aw = rw1+rw2 (11.39) 
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The angles inv αw and inv α is calculated by the following formula 

inv αy = tan αy – αy (11.42) 

In the case where the center distance equals r1 + r2 it is found that αw equals α, thus resulting in 

x1 + x2= 0.This center distance, known as α (no indices), can be found from the following 

 

We then find that 

 

11.13 Radial clearance 

The radial clearance for a gear wheel in mesh is the distance between the tip circle of that gear 

and the tooth root circle of the meshing gear. In other words, the amount by which the 

dedendum of the gear exceeds the addendum of the meshing gear. 

 

[billedtekst.start]Figure 11.14: Two gears with profile shift. Left: engaged with a rack 

Right: in clearance free engagement.[billedtekst.slut] 

For a simple gear with no addendum modification x1 + x2 = 0, and manufactured with a 

basic rack in accordance with ISO/R 2334, the clearance is (see Figure 11.8) 



 

Side 230 

c = 0.25m (11.46) 

With this clearance the addendum and dedendum height of the tooth is 

had = mn (11.47) 

hdd = mn + 0.25mn (11.48) 

where mn is the normal module for helical gears (see later in this chapter), for spur gears mn = m. 

For a gear with addendum modification, the clearance might be unacceptable. As the 

center distance is less than (x1 + x2)m+a, the height of the teeth must be altered, if the clearance 

has to be fully retained (c = 0.25m). The tip relief factor, k, is calculated from (11.39) and (11.43) 

and Figure 11.14. 

km = aw – (a + x1m + x2m) (11.49) 

km = (aw – a) – (x1 + x2 )m (11.50) 

where k is, numerically, a small factor ≤ 0. For k > –0.1 the tip relief is not carried out, and for k < 

–0.1 an effective tip relief factor kw = k + 0.1 is used. 

 

11.14 Gear radii 

Based on the pitch radii and Figure 11.14, we find: 

Base radius 

rb1=r1 cos α (11.52) 

Root radius 

rf1 = r1 + x1m – m – 0.25m (11.53) 

rf1 = r1 – (1.25 – x1)m (11.54) 

Tip radius 

ra1 = r1 + x1m +m + kwm (11.55) 

ra1 = r1 + (1 + x1 + kw)m (11.56) 

The tip radius can, if the tip relief is taken fully into account, be calculated from 

ra1 = aw – (rf2 + 0.25m) (11.57) 

Pitch radii 
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11.15 Contact ratio 

The transverse contact ratio, εα, is defined as the ratio between the length of path of contact, gα, 

and the contact pitch, pe. 

 

[billedtekst.start]Figure 11.15: Length of path of contact.[billedtekst.slut] 

Based on Figure 11.15, the length of the path of contact gα = AE is calculated 

gα = rb1 (tan αE1 – tan αAl) (11.60) 

 

tan αA1 = (1 + u) tan αw –u tan αA2 (11.64) 

 

The contact pitch, pe, equals the base pitch, as the line of action is wounded off the base circle. 

The circumference of the base circle is 
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[billedtekst.start]Figure 11.16: Contact pitch.[billedtekst.slut] 

2πrb = zpb (11.66) 

We can then calculate the base pitch pb 

 

And as the contact pitch, pe = pb , we have 

pe = πm cos α (11.68) 

We defined the transverse contact ratio, εα, as the relation between the length of path of 

contact and the contact pitch. 

 

and as we have 

 

we can then calculate the transverse contact ratio as 

 

The transverse contact ratio, εα, is used during the design phase, to evaluate a gears possibility 

for low noise level. A gear with a big contact ratio will normally give a lower noise level, than a 

gear with a small contact ratio, given the same quality of manufacturing and the same working 

conditions. 
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11.16 Base tangent length 

A control of all teeth on a gear is time consuming and is seldom done. Normally, the control is a 

measurement of the base tangent length. The base tangent length is the distance between two 

parallel planes, which are tangents to teeth, on respectively the left flank and the right flank. 

 

[billedtekst.start]Figure 11.17: Base tangent length.[billedtekst.slut] 

The number of teeth to measure, must be selected so that the points of contact are as 

close to the base circle as possible. As the line of measure is normal to the tooth flanks at the 

points of contact, it is at the same time tangent to the base circle. Thus, it is possible to calculate 

the base tangent length as the corresponding curve length on the base line 

Wzw = (zw–1)pb + sb (11.73) 

 

WZw = m cos α (π (zw – 0.5) + z inv α + 2x tan α) (11.75) 

The tolerance for base tangent length can be found in DIN 3967 or DIN 3963. The 

number of teeth to measure is calculated as 

 

rounded to an integer. 

11.17 Helical gears 

A helical gear can be thought of as created of many thin spur pieces, displaced slightly. As the 

displacement is the same for all pieces, the line of contact in the plane of contact will be a 

straight line, rotated the angle βb from the line of contact for a spur gear. 

For practical reasons are dimensions defined in the normal section given the index n, 

while dimensions defined in the cross section are given the index t. Even though the module mn, 

for a helical gear is the same as the module m, for a spur gear, the index is used to avoid any 

mistakes. The helix angle for a gear, is defined as the angle the cutting rack is rotated, compared 



 

to manufacturing of spur gear. This angle is called β (no indices), as it is in a tangent plane to 

the reference circle. 
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[billedtekst.start]Figure 11.18: Helical gear.[billedtekst.slut] 

 

[billedtekst.start]Figure 11.19: Plane of contact for a helical gear.[billedtekst.slut] 

The reference diameter is 
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[billedtekst.start]Figure 11.20 Plane of contact for a helical gear. The gear is shown with and 

without hidden lines.[billedtekst.slut] 

 

 

[billedtekst.start]Figure 11.21: Cutter reference plane - tangent plane to the reference 

circle.[billedtekst.slut] 

The base circle diameter is 

db = d cos αt (11.81) 

Contact pitch in the cross section is 



 

Side 236 

 

[billedtekst.start]Figure 11.22: Contact plane - tangent plane to the base 

circle.[billedtekst.slut] 

Pet = Pbt = Pt cos αt (11.82) 

In order to establish relations between the interesting angles in, respectively the normal 

section and the cross section, a point on the reference circle is considered in Figures 11.23 and 

11.24. The only difference between the figures is that the gear in Figure 11.23 is a right hand 

helical gear and the gear in Figure 11.24 is a left hand helical gear. 

 

[billedtekst.start]Figure 11.23: Angular relations for a right hand helical gear, without 

profile shift.[billedtekst.slut] 

From Figures 11.23 and 11.24 we see that βb is not depending on a profile shift. With no 

profile shift we have the following geometric and force relations 

 

sin βb = sin β cos αn (11.84) 
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[billedtekst.start]Figure 11.24: Angular relations for a left hand helical gear, with profile 

shift.[billedtekst.slut] 

Fα = Ft tan β (11.85) 

Fr = Ft tan αt (11.86) 

with profile shift we have 

 

sin βb = sin βw cos anw (11.88) 

Fα = Ft tan βw (11.89) 

Fr = Ft tan αtw (11.90) 

The contact ratio for helical gears, is calculated based on two contribution contact ratios, 

εα and εβ, and the sum of these two contributions, εγ = εα + εβ· The transverse contact ratio, εα, is 

the same as for spur gears. 



 

Side 238 

 

and as we have 

 

we find 

 

tan αA1 = (1 + u) tan αtw – u tan αA2 (11.96) 

 

εβ is called the contact ratio addendum and is a measure for how long one side of a tooth is in 

front of the other side, gβ, in relation to the pitch of the reference circle, pt. 

 

If the helix angle, β, or the tooth width, b, is adjusted so that εβ is an integer (1 - 3), the 

length of the line of action is at all times constant. With respect to the noise from the gear this 

should be an advantage. Other geometric dimensions are 

 

dα1 = d1 + 2(1 + x1 + kw)mn (11.102) 

df1 = d1 – 2(1.25 – x1)mn (11.103) 
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11.18 Nomenclature 

a mm Center distance, but (without suffix) only if x1 + x2 = 0 

aw mm Center distance 

b mm Width of wheel (axial length) 

c mm Clearance 

d1, d2 mm Reference diameter. 1: pinion, 2: wheel 

da1 , da2 mm Tip diameter 

db1, db2 mm Base diameter 

df1,df2 mm Root diameter 

dw1 mm Diameter of working circle 

f μm Individual error 

gα mm Length of path of contact 

had mm Addendum of basic rack 

hdd mm Dedendum of basic rack 

i – Angular speed ratio/transmission ratio. i = wdriven/wdriving 

k – Addendum modification factor 

l mm Undercut length 

m mm Module. (Standardized) 

mn mm Normal module. (Standardized modules. Suffix n used for helical gears) 

mt mm Transverse module 

P mm Pitch (or circular pitch) 

Pd mm Diametral pitch 



 

r1,r2 mm Reference radius. 1: pinion, 2: wheel 

ra1,ra2 mm Tip radius 

rb1,rb2 mm Base radius 

rf1,rf2 mm Root radius 

rw1 rw2 mm Pitch radius 

S mm Tooth thickness at reference diameter 

sw mm Tooth thickness at (working) pitch diameter 

U – Gear ratio z2/ z1 

X – Addendum modification coefficient 

Z – Number of teeth 

C – Pitch point 

W mm Base tangent length 

Α rad Pressure angle for tool (basic rack) 

αw rad Pressure angle for two meshing gear wheels 

β rad Helix angle (without suffix: at reference cylinder) 

βb rad Helix angle at base circle 

Γ rad Auxiliary angle 

Ε – Contact ratio for spur gear 

εα – Transverse contact ratio 

εβ – Contact ratio addendum (for helical gear) 

εγ – Contact ratio, total (for helical gear) 

ρaΡ0 mm Tip Radius of tool 

ω rad/s Angular speed 



 

()  Reference circle (without suffix) 
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()a Axial direction 

()b Base circle, base cylinder 

()f Tooth root, dedendum 

()n Normal section 

()r Radial direction 

()t Transverse section 

()α Transverse contact, profile 

()β Helix 

()γ Total, total value 

()l Pinion 

()2 Wheel 
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Chapter 12 The strength of involute gears 

12.1 Introduction 

The strength analysis in this chapter, is mainly based on the standard ISO 6336 [4], which 

provides a uniform mean of comparing and relating gear performances over a wide range of 

designs and applications. However, where appropriate simpler methods of evaluation is 

described in DIN 3990 [3] these methods are introduced. 

This chapter covers calculation of load capacity, as limited by contact stress (pitting) and 

tooth root stress causing tooth breakage, for spur and helical gears. The nomenclature used is 

described in Chapter 11. 

12.2 General influence factors 

12.2.1 Nominal tangential load, FNt 

The nominal tangential load, tangential to the reference cylinder, is calculated directly from the 

power, P, transmitted by the gear pair. 

 

12.2.2 Application factor, KA 

The application factor KA accounts for dynamic overload from sources external to the gear. The 

factor depends on the physical characteristics of the driving and driven machine, on the 

couplings and on the operating conditions. 

The application factor should be determined by precise measurement or by 

comprehensive system analysis. However, if this is not possible, a rough guidance is given 

intheTables 12.1, 12.2 and 12.3. 

The values in the tables are only valid for gears not running in the resonance speed 

range. Experience show that KA may be a little greater for a speed increasing transmission, than 

for a speed reducing transmission. Consequently, the data in Table 12.1 should be increased 

with a factor 1.1 for a speed increasing transmission. Tables 12.2 and 12.3 show examples of the 

characters on various machines. 
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Table 12.1: Application factor for speed reducing gears [7]. 

Driving-Driven Uniform Moderate shocks Heavy shocks 

Uniform 1 1.25 1.75 

Light shock 1.25 1.50 2 

Medium shock 1.50 1.75 2.00+ 

Table 12.2: Examples for driving machines [7]. 

Character Driving machine 

Uniform electric motor, steam turbine, gas turbine 

Light shock multi cylinder combustion engine 

Medium shock single cylinder combustion engine 

Table 12.3: Examples for driven machines [7]. 

Character Driven machine 

Uniform generator, belt conveyer, platform conveyer, worm conveyer, light elevator, electric 

hoist, feed gears of machine tools, ventilator, turbo blower, turbo compressor 

Light shock main drive to machine tool, heavy elevator, turning gears of crane, mine ventilator, 

multi cylinder piston pump, feed pump 

Heavy 

shock 

press, shear, rubber dough mill, rolling mill drive, power shovel, heavy centrifuge, 

heavy feed pump, rotary drilling apparatus, pug mill 

12.2.3 Dynamic factor, KV 

The dynamic factor, KV, accounts for internally generated loads due to vibrations of pinion and 

gear against each other. KV is defined as the ratio between the maximum force which occurs at 

the mesh of an actual gear pair, and the corresponding load due to the externally applied load. 

The main influences are: 

• Transmission errors. 



 

• Masses of pinion and gear. 

• Mesh stiffness. 

• Transmission load, including application factor. 
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Further influences are 

• Lubrication. 

• Damping characteristics of the gear system. 

• Shaft and bearing stiffness. 

• Bearing pattern on loaded tooth flank. 

 

where 

fF The load adjustment factor, see Table 12.4. K Tooth factor, [s/m], see Table 12.4 

z1 Number of teeth on pinion. 

V Tangential speed in gear contact, [m/s]. 

u Teeth ratio, z2 /z1. 

For helical gears with εβ < 1 the values in Table 12.4 should be interpolated between the 

values for εβ = 0 and εβ ≥ 1. The load per unit width( divided by the face width b) of the tooth is 

defined as 

 

Table 12.4: Load adjustment factor fF and tooth factor K [3], [4] and [2]. 

 Quality class 

 5 6 7 

wt [N / mm] Spur gear fF 

200 1.34 1.43 1.52 

350 1.00 1.00 1.00 

500 0.86 0.83 0.79 

K[s/m] 36 47 62 

wt [N / mm] Helical gear fF, εβ ≥ 1 

200 1.47 1.55 1.61 

350 1.00 1.00 1.00 



 

500 0.81 0.78 0.76 

K[s/m] 23 32 46 



 

Side 244 

12.3 Longitudinal (axial) load distribution factors, KHβ, KFβ 

The load distribution factors account for the effects of non-uniform load distribution across the 

face width. These factors are also called width factors. 

KHβ accounts for the effect on the Hertzian pressure on the tooth flank 

KF accounts for the bending stress at the tooth root. 

The main influence factors are: 

• Cutting errors 

• Errors in mounting due to bore errors 

• Internal bearing clearance 

• Wheel and pinion shaft alignment errors 

• Tooth stiffness 

• Shaft stiffness 

• Housing stiffness 

• Bearing deflections 

• Thermal expansion and distortion 

• Tangential and axial load 

• Running-in effects 

An approximate expression for width factor for tooth foot strength, KFβ, is 

KFβ≈1+ (Kβ – 1 )fwfP (12.6) 

Where 

Kβ Basic width factor, see Table 12.5. 

fw Line load adjustment factor, see Table 12.6. 

fp Materials factor, see Table 12.7. 

an approximate expression for width factor for tooth surface strength, ΚHβ, is 

 

12.3.1 Principles of longitudinal load distributions 

Figures 12.1 and 12.2, illustrate the effect of misalignment and tooth loading on load 

distribution before running-in. 
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Table 12.5: Basic width factor Kβ [3], [4] and [2]. 

Tooth width [mm] Quality class 

Over Up to 5 6 7 

 20 1.07 1.08 1.10 

20 40 1.08 1.09 1.11 

40 100 1.09 1.09 1.13 

100 160 1.12 1.13 1.16 

160 315 1.14 1.15 1.18 

Table 12.6: Adjustment factor for line load fw [3], [4] and [2]. 

Adjustment factor for line load fw 1 1.15 1.3 1.45 1.6 

Load per unit length wt [N/mm] > 350 ≈ 300 ≈ 250 ≈ 200 ≤ 100 

Table 12.7: Materials factor fp [2] 

Materials factor fp = 1 ≈0.7 ≈0.5 

Materials Steel/Steel Cast steel/Cast steel Cast iron/Cast iron 

 

[billedtekst.start]Figure 12.1: Longitudinal load distribution. δβy[μm] is effective equivalent 

misalignment (after running-in). bcal [mm] is calculated facewidth. Principle: a) unloaded; b) 

light load and/or high helix error; c) heavy load and/or small helix error.[billedtekst.slut] 



 

12.4 Transverse load distribution factors, KHα, KFα 

The distribution of total tangential load over several pairs of meshing teeth depends, in the case 

of given gear dimensions, on gear accuracy and the value of the total tangential load. The factor 

KHα,, takes into account the effect of the load distribution on gear-tooth contact stresses and the 

factor KFα takes the effect of the load distribution on tooth root strength into account. 

The main influences are: 

• Total mesh stiffness. 
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[billedtekst.start]Figure 12.2: Longitudinal load distribution. Maximum specified load Fmax/b 

[N/mm]; a) light load and/or high helix error; b) heavy load and/or small helix 

error.[billedtekst.slut] 

• Total tangential tooth load. 

• Base pitch error. 

• Tip relief. 

• Face width. 

• Running-in allowance. 

• Gear tooth dimensions. 

12.4.1 Formulas for determination of factors 

Gears with total contact ratio εγ ≤ 2 

 

Where 

εγ Is the total contact ratio. 

cγ The mean total tooth stiffness in transverse plane, depends mainly on the material. For 

steel the value is ≈ 20N/(mm · μm). For cast iron the value is ≈ 14N/(mm · μm). 

fpe The maximum allowable base pitch error on pinion or wheel, see Tabl 12.8. 

yp Running in allowance. The base pitch error, fpe, is typically reduced by yp during the 

running in process. 

wt The tangential load per unit length, see (12.5). 

KFβ Width factor for tooth foot strength, see (12.6). 
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Gears with total contact ratio εγ > 2 

 

All parameters are previously described. 

If the outcome of using (12.8) or (12.9) is that KFα = KHα < 1 then the values should be 

adjusted to KFa = KHα = 1. This happens when more than one pair of teeth transmits the load. 

If (12.8) or (12.9) gives a value that is larger than obtained by (12.10), (12.11), (12.12) and 

(12.13) then only one pair of teeth transmits the load and the values for KFα and KHα from (12.10) 

and (12.11) should be used for further calculations. 

 

If εβ > 1 then use εβ = 1 in (12.13). 

Table 12.8: Accepted base pitch errors for industrial gears, when calculating gear strength [4], 

[3] and [2]. 

Quality class 5 6 7 

Max allow. base pitch error 9 15 25 

Running in allowance yp[μm] 1.5 2.5 4 

12.5 Calculation of surface durability (pitting) 

In Chapter 11 it is analyzed how the contact point (contact line) between two gear teeth moves 

along the flanks as the gears rotate. In the contact a Hertzian pressure distribution is present 

due to the torque transmitted. If the Hertzian pressure (compressive stress) reaches a certain 

level a fatigue failure called pitting, may start to develop on the teeth flanks. Pitting causes 

small debris to leave the surface of the teeth flanks. When pitting failure evolves in a 

transmission, it becomes noisy and the vibration level increases. The maximum Hertzian 

pressure is the most significant influencing factor on the development of pitting failure, but also 

the materials, the hardening, the sliding speed in the contact, the teeth flank surface finish and 

the lubricant are important, when the pitting failure risk is evaluated. Allowance is made for 

these factors in the expressions developed in this section. 



 

12.5.1 Fundamental formulas 

The calculation of the surface load capacity is based on the Hertzian pressure on the operating 

pitch circle. The Hertzian stress, σH, at the pitch circle must be equal to or less than the allowable 

Hertzian stress, σHP 
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where σH0 is the basic value of contact stress 

 

ZH Zone factor, see Subsection 12.5.4. Takes into account the flank curvatures of the pitch 

point and the relation of the tangential load at the pitch circle to that of the reference 

cylinder. 

ZE Elasticity factor, see Subsection 12.5.5. Takes into account the material properties. 

Zε Contact ratio factor, see Subsection 12.5.6. Takes into account the influence of the 

effective length of the lines of contact. 

Ζβ Helix angle factor, see Subsection 12.5.7. Takes into account the influence of the helix 

angle. 

d1, b, u Other factors relate to the geometry. 

12.5.2 Allowable contact stress 

The allowable contact stress σHP is to be evaluated separately for pinion and wheel. 

 

where 

σHlim Endurance limit for contact stress (material related factor). 

ZN Life factor for contact stress, see Subsection 12.5.8. Permits higher load capacity for a 

limited number of cycles. 

SHmin Minimum required safety factor for contact stress. 

 In general, the factors ZL, ZR, ZV takes into account the influence of the oil film on surface fatigue. 

ZLLubrication factor, see Subsection 12.5.9. 

ZR Roughness factor, see Subsection 12.5.10. 

ZV Speed factor, see Subsection 12.5.11. 

ZW Work hardening factor, see Subsection 12.5.12. Accounts for the effect on load capacity 

of meshing with a surface hardened mating gear. 

ΖX Size factor for contact stress. Normally ΖX has a value of 1. 

12.5.3 Safety factor for contact stress (against pitting) 

The calculated safety factor for contact stress must be checked separately for pinion and wheel. 
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12.5.4 Zone factor 

The zone factor accounts for the influence on the Hertzian pressure of tooth flank curvature at 

pitch point and converts the tangential force at the reference cylinder to the normal force at the 

pitch cylinder. 

 

12.5.5 Elasticity factor 

The elasticity factor accounts for the influence of the material properties E (Young’s modulus) 

and v (Poisson’s ratio) on the Hertzian pressure. 

 

When Young’s modulus and Poisson’s ratio are the same for both pinion and wheel, 

(12.20) can be written as 

 

For steel v = 0.3 and therefore 

 

For mating gears in materials having different Young’s modulus but same Poisson ratio, 

the equivalent modulus can be found as 

 

12.5.6 Contact ratio factor 

The contact ratio factor accounts for the influence of the transverse contact ratio, and the 

overlap ratio on the specific surface load of gear teeth. 

Spur gears 

 

Helical gears 



 

 

The transverse contact ratio, εα, and the overlap ratio, εβ, can be found in Chapter 11. 
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12.5.7 Helix angle factor 

Independently of the influence of helix angle on the length of line of contact, the helix angle 

factor, Zβ, accounts for the influence of helix angle on surface durability, allowing for such 

variables as the distribution of load along the lines of contact. 

 

12.5.8 Life factor 

The life factor takes account of a higher permissible Hertzian stress if only limited durability 

endurance (number of cycles) is demanded. 

Based on the number of cycles, NL, material and hardening, we can calculate ZN as: 

For through hardened steels or surface hardened steel when a certain amount of pitting 

is allowed 

ZN = 1.6 NL ≤ 6·105 (12.28) 

 

ZN = 1 109 ≤ NL (12.31) 

For through hardened steels or surface hardened steels 

ZN = 1.6 NL ≤ 105 (12.32) 

 

ZN = 1 5-107 ≤ NL (12.34) 

For through hardened or nitriding steels, gas nitridation cast iron 

ZN = 1.3 NL ≤ 105 (12.35) 

 

ZN = 1 2·106 ≤NL (12.37) 

For through hardened steels, bath nitridation 

ZN = 1.1 NL≤105 (12.38) 

 

ZN = 1 2 106 ≤ NL(12.40) 
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12.5.9 Lubrication factor 

The lubrication factor, ZL, accounts for the influence of the type of lubricant and its viscosity on 

the surface load capacity. 

 

If σHlim is less than 850N/mm2, use σHlim = 850N/mm2. If σHlim is greater than 1200N/mm2, 

use σHlim = 1200N/mm2. 

12.5.10 Roughness factor 

The roughness factor accounts for the influence of surface texture of tooth flanks on surface load 

capacity. 

 

where Rz100 is the mean relative roughness, relative to a center distance of 100mm. 

 

If σHlim is less than 850N/mm2 use σHlim = 850N/mm2; if σHlim has a higher value than 

1200N/mm2, use σHlim = 1200N/mm2. For estimates one may use Ra ≈ 0.lRz. 

12.5.11 Speed factor 

The speed factor accounts for the influence of the pitch line velocity on the surface load 

capacity. 

 

If σHlim is less than 850N/mm2 use σHlim = 850N/mm2; if σHlim has a higher value than 

1200N/mm2, use σHlim = 1200N/mm2. v[m/s] is the tangential speed in the pitch point. 

12.5.12 Work hardening factor 

The work hardening factor accounts for the increase of surface durability due to meshing a steel 



 

wheel, with a hardened pinion with smooth tooth surface. 

 

where HB is the Brinell hardness of the hardened pinion. 

For hardness inside the range 130 < HB < 400, the value assigned to ZW is 1.0. 
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12.6 Calculation of load capacity (tooth breakage) 

The methods are based on the assumption that the highest tooth root tensile stress arises by 

application of the force at the outer point of single tooth pair contact (in the case of helical gears 

for the virtual teeth in the normal section). 

12.6.1 Fundamental formulas 

The tooth root stress, σF, must be equal to or less than the allowable tooth root pressure, σFP 

σF = σF0KAKVKFβKFα ≤ σFP (12.49) 

where σF0 is the basic value of tooth root stress. 

 

where 

YFa Tooth form factor, see Subsection 12.6.4. Takes the influence of the tooth form on the 

nominal bending stress into account. 

YSa Stress modification factor. Takes into account theconversion of the nominal bending 

stress to the local tooth root stress. 

YFS Shape factor for tooth, see Table 12.9. 

Yε Contact ratio factor, see (12.12). 

Υβ Helix angle factor, see Subsection 12.6.5.Takes into account the influence of the helix 

angle. 

12.6.2 Allowable tooth root stress 

The allowable tooth root stress, σFP, is to be evaluated separately for pinion and wheel. 

 

Where 

σFlim Endurance limit for tooth root stress (material related factor). 

YNT Life factor for tooth root stress, see Subsection 12.6.6. Permits higher load capacity for a 

limited number of cycles. 

SFmin Minimum demanded safety factor for tooth root stress. 

Yδ Relative notch sensitivity factor, see Subsection 12.6.7. Indicates to what extent the 

theoretical stress concentration lies above the endurance limit in the case of fatigue 

breakage. 

YR Relative surface condition factor, see Subsection 12.6.8. Takes into account the 



 

dependence of the tooth root strength on the surface condition in the tooth root fillet. 

Υχ Size factor for tooth root stress, see Subsection 12.6.9. 
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12.6.3 Safety factor for tooth root stress (against tooth breakage) 

The calculated safety factor for tooth root stress must be checked separately for pinion and 

wheel 

 

12.6.4 Tooth form factor 

The tooth form factor, YFS, takes into account the influence of the tooth form on the nominal 

bending stress. See Tables 12.9 and 12.10. 

Table 12.9: Tooth form factor YFS for positive profile shift factor [2]. 

Profile shift factor 

zn 0 +0.1 +0.2 +0.3 +0.4 +0.5 +0.6 +0.7 +0.8 +0.9 + 1.0 

16 4.88 4.74 4.59 4.47 4.38 4.32 4.26 4.21 4.16 4.11 4.03 

17 4.83 4.67 4.55 4.45 4.37 4.31 4.26 4.22 4.18 4.13 4.05 

18 4.77 4.63 4.51 4.42 4.36 4.30 4.27 4.23 4.19 4.15 4.08 

19 4.71 4.58 4.48 4.40 4.34 4.30 4.27 4.24 4.20 4.16 4.10 

20 4.66 4.55 4.45 4.38 4.33 4.30 4.27 4.25 4.22 4.18 4.12 

50 4.27 4.28 4.29 4.32 4.34 4.36 4.38 4.40 4.40 4.40 4.38 

60 4.26 4.28 4.30 4.33 4.35 4.38 4.41 4.43 4.43 4.43 4.41 

70 4.26 4.29 4.31 4.34 4.37 4.40 4.43 4.45 4.45 4.45 4.45 

Table 12.10: Tooth form factor YFS for negative profile shift factor [2]. 

Profile shift factor 

zn -0.5 -0.4 -0.3 -0.2 -0.1 

20     4.80 

22   5.0 4.85 4.70 



 

24  5.07 4.89 4.74 4.62 

50 4.37 4.33 4.30 4.28 4.27 

60 4.28 4.25 4.20 4.25 4.25 

70 4.23 4.22 4.22 4.23 4.24 

12.6.5 Helix angle factor 

The helix angle factor, Yβ, takes into account the difference between the helical gear and the 

virtual spur gear in the normal section. 

 

If εβ > 1 in (12.53) then εβ 1 should be used. If β > π/6 in (12.53) then β = π/6 should be 

used. 

Yβmin = 1 – 0.25εβ ≥ 0.75 (12.54) 
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12.6.6 Life factor 

The life factor, YNT, takes into account that, in the case of limited life (number of cycles), a higher 

tooth root stress can be permitted. For a given number of load cycles, NL, can the life factor be 

found, based on the material. 

For through hardened and tempered steel 

YNT = 2.5NL ≤ 104 (12.55) 

 

YNT = 1 3·10 < NL (12.57) 

For surface hardened steels 

YNT = 2.5 NL ≤ 103 (12.58) 

 

YNT = 1 3 106 < NL (12.60) 

For through hardened or nitriding steels, gas nitridation 

YNT = 1-6 NL ≤ 103 (12.61) 

 

YNT = 1 3·106 < NL (12.63) 

For through hardened steels, bath nitridation 

YNT = 1.2 NL ≤ 103 (12.64) 

 

YNT = 1 3 10 < N (12.66) 

12.6.7 Relative notch sensitivity factor, Yδ 

The relative notch sensitivity factor, Yδ , indicates the sensitivity to stress concentration in the 

case of fatigue breakage. 

The factor is based on the actual stress concentration factor and the gear material. It is mostly 

found 

that 

Υδ = 1.0 (12.67) 



 

12.6.8 Relative surface condition factor 

The relative surface condition factor, YR, takes into account the dependence of the tooth root 

strength on the surface condition in the root fillet, mainly the dependence on the peak to valley 

roughness. 

The factor is based on the surface roughness and the material. 
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For Rz < lμm. For steel 

YR = 1.120 (12.68) 

For surface hardened steels and perlitic malleable iron 

YR = 1.070 (12.69) 

For cast iron and nitridation steels 

YR = 1.025 (12.70) 

For 1μm ≤ Rz ≤ 40μm. For steel 

YR = 1.674 – 0.529(Rz + l)0.1 (12.71) 

For surface hardened steels and perlitic malleable iron 

YR = 5.306 – 4.203(Rz + I)0.01 (12.72) 

For cast iron and nitridation steels 

YR = 4.299 – 3.259(Rz + I)0.005 (12.73) 

12.6.9 Size factor 

The size factor, ΥX, takes into account the strength decrease with increasing size. The factor is 

based on the normal module and material for the gear. 

For steel, perlitic malleable iron, spheroidal cast iron 

YX = 1.03 – 0.006mn 5 < mn < 30 (12.74) 

ΥX = 0.85 30 <mn (12.75) 

For surface hardened steels 

YX = 1.05 – 0.01mn 5 <mn < 30 (12.76) 

ΥX = 0.75 30 <mn (12.77) 

For cast iron 

YX = 1.075 – 0.01mn 5 < mn < 30 (12.78) 

YX = 0.7 30 <mn (12.79) 

For mn ≤ 5 use ΥX = 1.0. 
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12.7 Elastohydrodynamic lubrication in gears 

Due to the very high pressure in the contact between the teeth elastohydrodynamic lubrication 

occurs. To determine an appropriate oil viscosity the "Stribeck reference contact pressure" is 

determined 

 

where 

ks [N/mm2] " Stribeck reference contact pressure". 

Ft[N] Tangential force in contact. 

b[mm] Width of pinion. 

d1 [mm] Reference diameter of pinion. 

u Gear ratio. 

The "Stribeck reference contact pressure" is not the actual contact pressure in the contact, 

but rather a value used to determine the appropriate viscosity. 

The lubrication coefficient ks/v is used as parameter in Table 12.11 to find the viscosity 

Table 12.11: The relation between ks/v and the kinematic viscosity at 40°C for the lubricant 

recommended for the gear [2]. 

ks/v [MPa · s/m] 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10 

V [mm2/s] 47 52 56 60 63 66 69 71 74 77 

ks/v [MPa · s/m] 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

v[mm2/s] 77 95 120 140 150 160 168 175 185 195 

ks/v [MPa · s/m] 2 3 4 5 6 7 8 9 10 20 

v[mm2/s] 270 330 380 420 470 495 520 550 570 740 

12.8 Design modification/optimization 

The previous part of the chapter has described how the strength of gears are assessed according 

to the ISO 6336 standard. In gear design there are, as indicated, two primary limiting factors 

with respect to the strength, both are related to fatigue. The first is a fatigue fracture that leads 

to breakage of the whole tooth. This is due to the bending stress at the tooth root. The second 

limiting factor is surface fatigue, primarily pitting. This fatigue is due to the contact pressure 

between the teeth on contacting gears. The design modifications shown here are related to the 



 

first limiting factor, the bending stress. 

The estimation and evaluation of bending stress in gear teeth has a long history that goes back 

to the 19th century, see e.g. [5]. In this paper an earlier result from 1868 for evaluating the 

strength of gear is reported. The evaluation is given by 

X = 2000pcf (12.81) 

where X is the tooth breaking load in pounds, pc is the circular pitch in inches and f is the tooth 

face width in inches. The result in (12.81) has many deficiencies. First of all it does not account 

for the actual 
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tooth thickness at the root. The strength is therefore not calculated today using this formula but 

by the method presented in the previous parts of the chapter. 

The bending stress can also be calculated using the Finite Element Method (FEM), see 

e.g. [6], This is in contrast to the older method of photo elasticity, see e.g. [1], In gear design the 

maximal stress at the tooth root is controlled both by the nominal bending stress and by the 

stress concentration due to the geometrical changes. Using FE and methods of shape 

optimization it is possible to reduce stress concentration. The design/shape of involute teeth is 

highly controlled by the ISO standard that specifies the cutting tool shape for the teeth. For the 

function of the transmission the most important parameter is the involute tooth shape. Design 

changes can however be made to the gear tooth root without affecting the involute shape and 

therefore the functional goodness of the transmission can remain the same. The maximum 

bending stress in gears is however not in the involute part of the tooth but in the root, the shape 

of which is controlled by the cutting tool tip design, see Figure 11.7. 

 

[billedtekst start]Figure 12.3: Close-up of the stress concentration zone for the ISO design with 

17 teeth, a) Illustration of stress along the tooth root, b) Stress contour lines.[8][billedtekst slut] 

In Figurel2.3 the bending stress for the ISO profile is shown for the case of a gear with 17 

teeth. To illustrate the stress concentration, Figure 12.3a) shows the size of the largest principal 

stress along the part of the boundary where the stress concentration is present. The size of the 

stress is indicated by the gray area, the perpendicular thickness of the gray area corresponds to 

the stress level. Figure 12.3b) shows the contour lines of constant stress 

In doing shape optimization of gear teeth there are two possibilities. The most simple is 

to optimize the tooth root directly, but from a practical point-of-view it should instead be the 

tool that cuts the shape that should be designed as this shape indirectly controls the finished 

tooth shape. The cutting tool corner is a circular arc, this shape is the typical selected shape in 

many different standards related to machine elements, although it is seldom the optimal choice 

in relation to stress level minimization. 

In [8] it is shown that it is possible to make improvements in the bending stress for 

involute spur teeth that can be meshed with standard ISO teeth. The improvement in the 

bending stress is achieved through a stress concentration lowering. In the case of a spur gear 

with 17 teeth the improvement in the bending stress reported as compared to the ISO profile is 

11.9%, see Figures 12.4 and 12.5, only half a tooth is shown in Figure 12.5. For the case of 12 

teeth the improvement is 14.3%, see Figures 12.6 and 12.7. In [8] it is demonstrated that 

significant improvement in the maximum bending stress is possible. The geometric changes to 

the cutting tool are simple and can therefore be used for practical purposes. 



 

If the transmission is only running in one direction it is also possible to use asymmetric 

gear teeth, and the bending stress of these type of gears can also be optimized see e.g. [9]. 
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[billedtekst start]Figure 12.4: Close-up of the stress concentration zone for the optimal tooth for 

a gear with 17 teeth. The improvement in the maximum bending stress is 11.9% as compared to 

the ISO profile.[8][billedtekst slut] 

 

[billedtekst start]Figure 12.5: Left contour of half the tooth of a gear with 17 teeth. Right: Zoom 

of the area where the design of the tooth is changed. The ISO profile is shown together with the 

optimal shape. [8][billedtekst slut] 

 

[billedtekst start]Figure 12.6: Close-up of the stress concentration zone for the optimal tooth for 

a gear with 12teeth. The improvement in the maximum bending stress is 14.3% as compared to 

the ISO profile.[8][billedtekst slut] 
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[billedtekst start]Figure 12.7: Left contour of half the tooth of a gear with 12 teeth. Right: Zoom 

of the area where the tooth design is changed. The ISO profile is shown together with the 

optimal shape.[8][billedtekst slut] 

12.9 Nomenclature 

a mm Shaft center distance 

b mm Face width 

bcal mm Width of loaded tooth face according to Figure 12.2 

Cγ N/(mm, μm) Mean value of total tooth stiffness (or mesh stiffness) per unit face width 

d1,d2 mm Reference diameter of pinion, wheel 

f in Tooth face width 

fp – Materials factor 

fpe μm Maximum allowable base pitch error 

fw – Line load adjustment factor 

fF – Load adjustment factor 

ks N/mrn Stribeck reference contact pressure 

mn mm Normal module 

n1,n2 min–1 Revolutions 

Pc in Pitch (circular) 

u – Gear ratio zi/z\ 

v m/s Tangential speed 

wm N/mm Mean load per unit width according to Figure 12.2 



 

wmax N/mm Maximum load per unit width according to Figure 12.2 

Wt N/mm Tangential force including overload factors divided by tooth width 

yp μm Running in allowance 

Z1,Z2 – Number of teeth of pinion, wheel 

CZL – Auxiliary lubrication factor dependent of material strength 

CZR – Auxiliary roughness factor dependent of material strength 

CZV – Auxiliary speed factor dependent of material strength 

E1,E2 N/mm2 Modulus of elasticity for pinion and wheel 

E12 N/mm2 Elasticity factor 

Fm N Mean load according to Figure 12.2 

Fmax N Maximum specified load according to Figure 12.2 

Ft N Tangential force at reference circle 

FNt N Nominal tangential load. (Tangential to the reference cylinder) 

K s/m Tooth factor 

KV – Dynamic factor 

KA – Application factor 
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KFα – Transverse load distribution factor for bending stress 

KFβ – Longitudinal load distribution factor for bending stress 

KHα – Transverse load distribution factor for contact stress (Hertzian pressure) 

KHβ – Longitudinal load distribution factor for contact stress (Hertzian pressure) 

Kβ – Basic width factor 

NL – Number of cycles 

P Nm/s Transmitted power 

SF – Safety factor for bending stress (against breakage) 

SFmin – Minimum required safety factor for bending stress (against breakage) 

SH – Safety factor for contact stress (Hertzian pressure) (against pitting) 

SHmin – Minimum required safety factor for contact stress (Hertzian pressure) 

T1, T2 Nm Nominal torque; pinion and wheel respectively 

X lb Tooth breaking load 

YFα – Tooth form factor 

YFS – Shape factor for tooth form factor 

YNT – Life factor for tooth root stress 

YR – Surface condition factor 

YSα – Stress modification factor 

YX – Size factor for bending stress 

Yβ – Helix angle factor for bending stress 

Yβmin – Minimum helix angle factor for bending stress 

Yδ – The relative notch sensitivity factor 



 

Ye – Contact ratio factor for bending stress 

ZV – Speed factor 

ZE  Elasticity factor 

ZH – Zone factor for Hertzian pressure at pitch point 

ZL – Lubricant factor 

ZN – Life factor for contact stress 

ZR – Roughness factor for contact stress 

Zw – Work hardening factor 

ZX – Size factor for contact stress 

Zβ – Helix angle factor for contact stress 

Zε – Contact ratio factor for contact stress 

Ra μm Surface roughness parameter 

Rz μm Surface roughness parameter 

δβy 

εy 

μm Effective equivalent misalignment (after running-in) 

εα – Transverse contact ratio 

εβ – Overlap ratio 

εγ – Total contact ratio 

v50 mm2/s Kinematic viscosity at 50°C 

σF N/mm2 Tooth root stress 

σFlim N/mm2 Endurance limit for tooth root stress 

σFp N/mm2 Allowable tooth root stress 

ΣH N/mm2 Contact stress (Hertzian pressure) 



 

ΣH0 N/mm2 Basic value of contact stress 

σHlim N/mm2 Endurance limit for contact stress 

σHP N/ mm2 Allowable contact stress (allowable Hertzian pressure) 

w1,w2 rad/s Angular velocity of pinion, wheel 
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Chapter 13 2D Joint Kinematics 

13.1 Introduction 

In Chapter 7 we have already covered couplings and universal joints between shafts. The 

present chapter is devoted to practical aspects in relation to 2D kinematic joints. As such the 

chapter can be seen as an introduction into the subject of mechanisms or multibody dynamics. 

For textbooks describing multibody analysis in more details see e.g. [1] or [2], or specifically in 

relation to 2D [3]. 

The subject is closely related to mechanics in general. We can in principle split the 

subject of mechanics into two parts; statics and dynamics. The dynamics subject is then 

typically again split also into two parts; kinetics and kinematics. Graphically it can be 

interpreted as in Figure 13.1 

 

[billedtekst start]Figure 13.1: Relationship between mechanics and kinematics[billedtekst slut] 

Basically we may say that in kinetics we look at the forces and derive the motion which 

is the result of these forces, in kinematics we start from the motion without any necessary 

knowledge of the forces. A simple example of this conceptual difference is illustrated by the 

slider-crank mechanism in Figure 13.2. 

If we want to apply kinematics to find the motion, it is necessary that we have as many 

driving constraints as there are degrees of freedom (d.o.f.) in the system. The driving constraint 

should be given as a function of time and preferably in an analytical form as e.g. 

 

where K1 and K2 are dimensionless constants, t is time here measured in s. 
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[billedtekst start]Figure 13.2: Conceptual difference between kinetics and kinematics. In kinetics 

the motion is controlled by the forces/moments, here the torque T(t). In kinematics the motion is 

controlled directly, here by the rotation angle θ(t) of the crank.[billedtekst slut] 

13.2 Joints in 2D 

In the simplest form multibody dynamics deals with rigid bodies connected through joints. In 

2D the primary joints are (lower order pairs) 

• Revolute joint 

• Translational joint 

The secondary and more involved joints (higher order pairs) are 

• Point contact (sliding) joint 

• Rolling joint 

In the following the joints are described mathematical and described by constraints. The 

concept of constraints and the mathematical description of the revolute joint are presented in 

Section 7.3.2. In relation to the specific joints we also add some practical aspects. 

Revolute joint 

Figure 13.3 shows a simple schematic revolute joint, in the exploded view the reaction forces are 

added. The contact geometry of a revolute joint is a cylinder, i.e. the contact is over a surface. If 

the contact geometry of a joint if a surface we have a lower order pair, we classify a joint as a 

higher order pair if the contact is a line or a point, therefore the revolute joint is a lower order 

pair. Lower order pairs are generally simpler than higher order pairs. The constraints of lower 

order pairs can be defined without specific knowledge of the physical layout of the joint, 

contrary to higher order pairs. 

 

[billedtekst start]Figure 13.3: Schematically representation of a revolute joint and the 

corresponding reaction forces.[billedtekst slut] 

The number of d.o.f. that is removed by adding a revolute joint between two bodies is 

two. For any joint the number of d.o.f. that is removed by the joint corresponds to the number of 

independent reaction forces/moments. The mathematical constraints of the revolute joint are 

given in Section 7.3.2. 



 

The general positive points related to a revolute joint are 
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• Simple (inexpensive) 

• Constraint forces are transmitted evenly over the contact geometry 

• Easy to lubricate 

• Rather insensitive to dirt 

Due to these points the revolute joint is the most used joint in mechanisms. The reason 

for using other types of joints is 

• Some motions are difficult to produce exclusively by the use of revolute joint in a 

limited space, other motions cannot be achieved, e.g. indexed motion or gearing. 

Translational joint 

In Figure 13.4 a simple schematic translational joint is shown, in the exploded view the reaction 

force and moment are added. 

 

[billedtekst start]Figure 13.4: Schematically representation of a translational joint and the 

corresponding reaction force and moment.[billedtekst slut] 

For the translational joint the contact geometry is a surface and therefore the 

translational joint is a lower order pair. The number of independent reactions is two so the joint 

removes two d.o.f. corresponding to the reaction force and the reaction moment. Compared to 

the revolute joint, a translational joint is more difficult to produce and therefore more 

expensive. This is due to the needed accuracy of the contact geometry. The reaction force, R, is 

usually evenly distributed over the full length of the bushing (the length L in Figure 13.4). But 

the moment M must be added to this reaction force, the moment and the force will therefore in 

a real application act as edge forces (force couple) as seen in Figure 13.5. 

This concentration of the contacting force gives rise to an altogether rather uneven force 

distribution, and implies high demands on the surface finish and on the length L. The joint will 

have a tendency to press the lubricant away and in front of the joint, this also implies a higher 

sensitivity to dirt. 

The general positive point related to a translational joint is 

• Possibility of precise linear motion within a compact space 

Other points in relation to a translational joint are 

• More expensive than the revolute joint 



 

• Constraint forces are unevenly distributed 
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[billedtekst start]Figure 13.5: Reaction forces concentrated at the bushing edge.[billedtekst slut] 

• Difficult to lubricate 

• Sensitive to dirt 

To describe the constraints of the translation joint mathematically we first extend the 

notation used in Section 7.3.2. 

In Figure 13.6 a rigid body is shown, a local coordinate system ξ, η has been rigidly 

attached to the body. That a rigid body in 2D has three d.o.f. (relative to a global/inertial frame) 

can be seen directly in figure, since the body is fully constraint if the position {r} and the 

orientation θ of the local coordinate system is prescribed. 

 

[billedtekst start]Figure 13.6: A Point P attached to rigid body.[billedtekst slut] 

The position of a point P rigidly attached to the body can be given as 

{rP} = {r} + {s} = {r} + [A] {s'} (13.2) 

where {s'} is the vector {s} expressed in the local coordinates and [A] is the transformation 

matrix that transform from local to global coordinates 

 

Utilizing that the body is rigid we have that the vector {s'} is constant and that the 

velocity of point P is given by 
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{ṙp} = {ṙ} + [Å]{s'} = {ṙ} + w[B]{s'} (13.4) 

Where  and 

 

If we define a 2D hat vector {ŝ} as 

 

we find that 

 

and therefore that 

{rF} = {r} + CJ{S} (13.8) 

The acceleration of point P can be given as 

 

For a translational joint the number of constraints needed is two, i.e. the number of 

constraint equals the number of independent reaction forces and moments. To formulate the 

constraints for a translational joint we use Figure 13.7. 

 

[billedtekst start]Figure 13.7: Two bodies constraint by a translational joint[billedtekst slut] 

The first constraints is rather simple in that the two bodies cannot rotate relative to each other 

so 
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where θ1 and θ2 are the rotational coordinate for the two bodies and  are initial values. 

The second constraint needed is that the bodies cannot translate normal to the bushing. To 

facilitate this three point on the symmetry line is defined (Q1, P1 and J2). Two of the points are 

attached to body 1 and the last point is attached to body 2. Two global vectors can be defined 

 

please notice that the coordinates are given as found in (13.2), i.e. for the point Q1 we find 

 

Where  is the coordinates for point Q1 in the local coordinate system of body 1. 

The vector {s1} is a constant vector as seen from body 1 whereas {d} is not a constant 

because it is defined between two points on two different bodies. If these two vectors stay 

aligned then the two bodies cannot translate relative to each other perpendicular to this line. 

Using the hat notation this can be given as 

Φ2= {ŝ1}T{d}=0 (13.14) 

The constraints of a translational joint can therefore be given by (13.10) and (13.14). As it was 

the case for the revolute joint we find that the mathematical constraints can be defined without 

any specific information about the physical layout of the joint. 

Point contact joint 

 

[billedtekst start]Figure 13.8: Schematically representation of a point contact joint and the 

corresponding reaction forces.[billedtekst slut] 

In a point contact as seen in Figure 13.8 the contact geometry is a line (a point in 2D), this 

joint is therefore a higher order joint. The number of independent reaction forces is one (R) and 

therefore this type of joint removes one d.o.f., the size of the other force is directly related to the 

normal force through the dynamic coefficient of friction Compared to the revolute and 

translational joint the point contact joint will not keep the two bodies together so other 

joints/forces must be added to achieve this. A common practical application of this type of joint 

is the valve-cam connection in an engine. The normal 
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force R will in a real application be of the Hertzian type so that the force is distributed over an 

area. Compared to a revolute and translational joint the size of this area is very limited, so the 

joint has higher potential difficulties with regards to lubrication, dirt and wear. Usually the 

surfaces need to be hardened. The most common application of this type of joint is the gears 

where we know that excessive lubrication is needed. Typically the gear-box is therefore sealed 

which also to some extend solves the sensitivity to dirt problem. 

The general positive point related to a point contact joint is 

• Many possibilities for special motions, i.e. constant gearing or indexed motion. 

In formulating the constraints of a point contact joint we need to include the physical 

layout of the joint and different simplifications can be made depending on the joint at hand. The 

mathematical formulation is for this reason only exemplified by the configuration in Figure 

13.9. 

 

[billedtekst start]Figure 13.9: Two bodies constraint by a point contact joint.[billedtekst slut] 

The constraints can be formulated as 

 

The problem is that we only need one constraint not two as given here. The vector  is a 

constant vector in body 2, i.e.  is not constant and depends on the angle α. 

The simple way of solving this problem is to keep the constraint as formulated here and then 

add the α variable as an "artificial" coordinate to the coordinates i.e. the coordinates of body 1 

become 

{x1,y1,θ1,α}T (13.16) 

The vector  dependency on α can either be given in an analytical form or in 

numerical form where interpolation then is needed for intermediate points. This shows that the 

physical layout of the joint is needed for the definition of the point contact joint constraints, the 

layout is given by the vector  
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Rolling joint 

For the rolling joint seen in Figure 13.10 the contact geometry is the same as for the point contact 

joint, so this is also a higher order joint. The difference is that there are two independent 

reaction forces if 

R2 < μsR1 (13.17) 

where μs is the static coefficient of friction. So this type of joint removes two d.o.f. This type of 

joint also needs external forces to keep the two bodies together. If the reaction force R2 exceeds 

the limiting size then the rolling joint is transformed into a point contact joint. The difference 

between the two similar joints is also that typically we would like the friction force to be 

different. The friction should be low for the point contact joint since this gives rise to losses 

while we for the rolling joint would like the friction force limit to be high in order to broaden 

the application range, a typical application of this type of joint is the tire/road contact. 

 

[billedtekst start]Figure 13.10: Schematically representation of a rolling joint and the 

corresponding reaction forces.[billedtekst slut] 

In formulating the constraints of a rolling joint we also need to include the physical 

layout of the joint and many specific designs exist. We exemplify by the configuration in Figure 

13.11. Compared to the previous joint the formulation is more involved and most easily 

expressed in velocities. The constraint can be formulated as; the contact point of the two bodies 

must have the same velocity. 

 

[billedtekst start]Figure 13.11: Two bodies constraint by a rolling joint.[billedtekst slut] 

It should be noted that the vectors {s'1 } and { s'2} are not constant vectors since they are 

defined from the origo of the local coordinate system to the contact point, and during the rolling 

motion this point will move. The two constraints can mathematically be expressed as 
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If needed these equations can be integrated in order to be formulated in position coordinates. 

The layout of the joint enters the mathematical formulation of the joint through the vectors {s1} 

and {s2}. 

13.3 Degrees of freedom 

An important property of any mechanism is the overall number of degrees of freedom, Nd.o.f., 

this number corresponds directly to the number of independent inputs which are usually 

controlled by an actuator to fully control the mechanism motion. The overall degrees of 

freedom is also termed mobility. A free body in 2D has three d.o.f., so if we have Nbo free bodies 

we have 3Nbo overall d.o.f. for the system. 

We may find Nd.o.f. from 

Nd.o.f. = 3Nbo – 2Nre – 2Ntr – Npo – 2Nro (13.19) 

where 

Nbo number of bodies 

Nre number of revolute joints 

Ntr number of translational joints 

Npo number of point contact joints 

Nro number of rolling joints 

please notice that (13.19) can not be used in all configurations and might lead to inconsistent 

results due to the geometry of the mechanism. The reason is that the constraints must be 

linearly independent, i.e. no redundant constraints. 

13.4 Position, velocity and acceleration analysis 

If a mechanism with Nbo bodies is fully constrainted, i.e., we have a driver constraint Φd = 0 for 

each of the independent inputs, it is possible to find the position, velocity and acceleration by 

kinematic analysis. The number of driver constraints Ndr is 

Ndr = Nd.o.f. (13.20) 

Position analysis 

Overall we have a non-linear set of equations 
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where {Φ({q})} contains all kinematic constraints of the mechanism, {Φd ({q}, t)} contains all 

driver constraints, t is time and {q} is the Cartesian coordinates of the mechanism 

 

any "artificial" coordinates can be added to this coordinate vector. 

Assuming that (13.21) constitutes N linearly independent equations in N unknowns, this 

may be solved using Newton-Raphson iteration. This is an iterative numerical procedure that 

involves the calculation in each iteration step of the Jacobian matrix [Φq] given by 

 

The iteration of the Newton-Raphson iteration involves the following steps 

 

where i is the iteration index. The iterations are continued until convergence, i.e., until (13.21) is 

fulfilled to desired numerical precision. Newton-Raphson iteration does not converge in all 

cases and usually a suitable initial guess of the position vector is needed. If the time steps are 

reasonably small the previous position can be used. Alternatively one might use 

 

Velocity analysis 

With the position {q} found we can find the corresponding velocity  of the mechanism by 

differentiating the constraints with respect to time 

 

i.e. no iteration is involved in the velocity analysis and we can reuse the final inverted version of 

the Jacobian matrix, the numerical cost of finding the velocities is therefore small compared to 

the position analysis. 

Acceleration analysis 

With the position {q} and velocity  found we can find the accelerations  by differentiation 

once more with respect to time. 

 



 

i.e. no iteration is involved in the acceleration analysis, and the acceleration analysis reuse the 

final inverted version of the Jacobian matrix. 
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13.5 Mechanism design 

In designing a mechanism there are some overall useful point to follow, these are 

• Reuse existing designs (be inspired by already existing design) 

• The fewer actuators needed for the motion of the mechanism the better is the 

design 

• The fewer bodies in the mechanism the better is the design 

• Use revolute joints instead of translational joints if possible 

• Use lower order pairs instead of higher order pairs if possible 

13.6 Nomenclature 

{d} mm Geometric vector defined in global coordinate system 

i – Iteration index 

{q} Mixed Cartesian coordinate vector of mechanism 

{s} mm Geometric vector defined in global coordinate system 

{s'} mm Geometric vector defined in local coordinate system 

t s Time 

{r} mm Geometric vector defining centre of local coordinate system in global coordinate 

system 

{rp} mm Geometric vector defining position of point attached to body in the global 

coordinate system 

[A] – Transformation matrix 

K1,K2 – Constants 

L mm Length of bushing 

M Nm Moment 

Nd.o.f. – Number of degrees of freedom (mobility) 

Ndr – Number of driver constraints 



 

Nbo – Number of bodies 

Npo – Number of point contact joints 

Nre – Number of revolute joints 

Nro – Number of rolling joints 

Ntr – Number of translational joints 

Q,P,J – Points 

R N Reaction force 

α rad Angle 

μd – Dynamic coefficient of friction 

μs - Static coefficient of friction 

Φ – Constraint 

θ rad Angle 

{Φ} – Constraint vector 

[Φq] – Jacobian matrix 
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Appendix A Tables with ISO-tolerances and fits 

Table A.l: Selected standard tolerance grades IT for basic sizes up to 500mm. 

Tolerance grade IT5 IT6 IT7 IT8 IT9 IT10 IT11 IT12 

Diameter  

> ≤  

mm mm μm μm μm μm μm μm μm μm 

1 3 4 6 10 14 25 40 60 100 

3 6 5 8 12 18 30 48 75 120 

6 10 6 9 15 22 36 58 90 150 

10 18 8 11 18 27 43 70 110 180 

18 30 9 13 21 33 52 84 130 210 

30 50 11 16 25 39 62 100 160 250 

50 80 13 19 30 46 74 120 190 300 

80 120 15 22 35 54 87 140 220 350 

120 180 18 25 40 63 100 160 250 400 

180 250 20 29 46 72 115 185 290 460 

250 315 23 32 52 81 130 210 320 520 

315 400 25 36 57 89 140 230 360 570 

400 500 27 40 63 97 155 250 400 630 
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Table A.2: Upper deviation values for shaft sizes up to 500mm. For j s the deviation is ±IT. 

Tol. 

pos. 

a b c cd d e ef f fg 9 h js 

Diameter  

> ≤  

1 3 -270 -140 -60 -34 -20 -14 -10 -6 -4 -2 0  

3 6 -270 -140 -70 -46 -30 -20 -14 -10 -6 -4 0  

6 10 -280 -150 -80 -56 -40 -25 -18 -13 -8 -5 0  

10 18 -290 -150 -95 - -50 -32 - -16 - -6 0  

18 30 -300 -160 -110 - -65 -40 - -20 - -7 0  

30 40 -310 -170 -120 - -80 -50 - -25 - -9 0  

40 50 -320 -180 -130 - -80 -50 - -25 - -9 0  

50 65 -340 -190 -140 - -100 -60 - -30 - -10 0  

65 80 -360 -200 -150 - -100 -60 - -30 - -10 0  

80 100 -380 -220 -170 - -120 -72 - -36 - -12 0  

100 120 -410 -240 -180 - -120 -72 - -36 - -12 0  

120 140 -460 -260 -200 - -145 -85 - -43 - -14 0  

140 160 -520 -280 -210 - -145 -85 - -43 - -14 0  

160 180 -580 -310 -230 - -145 -85 - -43 - -14 0  

180 200 -660 -340 -240 - -170 -100 - -50 - -15 0  

200 225 -740 -380 -260 - -170 -100 - -50 - -15 0  

225 250 -820 -420 -280 - -170 -100 - -50 - -15 0  

250 280 -920 -480 -300 - -190 -110 - -56 - -17 0  



 

280 315 -1050 -540 -330 - -190 -110 - -56 - -17 0  

315 355 -1200 -600 -360 - -210 -125 - -62 - -18 0  

355 400 -1350 -680 -400 - -210 -125 - -62 - -18 0  

400 450 -1500 -760 -440 - -230 -135 - -68 - -20 0  

450 500 -1650 -840 -480 - -230 -135 - -68 - -20 0  

Table A.3: Lower deviation values for basic shaft sizes up to 500mm. 

Tol. pos. j j j k k m n P 

Tol. 

grade 

5 and 6 7 8 4 to 7 from 8 all all all 

Diameter  

> ≤  

1 3 -2 -4 -6 0 0 +2 +4 +6 

3 6 -2 -4 - +1 0 +4 +8 +12 

6 10 -2 -5 - +1 0 +6 +10 +15 

10 18 -3 -6 - + 1 0 +7 + 12 +18 

18 30 -4 -8 - +2 0 +8 + 15 +22 

30 50 -5 -10 - +2 0 +9 + 17 +26 

50 80 -7 -12 - +2 0 +11 +20 +32 

80 120 -9 -15 - +3 0 +13 +23 +37 

120 180 -11 -18 - +3 0 + 15 +27 +43 

180 250 -13 -21 - +4 0 + 17 +31 +50 

250 315 -16 -26 - +4 0 +20 +34 +56 

315 400 -18 -28 - +4 0 +21 +37 +62 

400 500 -20 -32 - +5 0 +23 +40 +68 
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Table A.4: Lower deviation values for basic shaft sizes up to 500mm. 

Tol. pos. r s t u V X y z za zb ZC 

All tolerance grades 

Diameter  

> ≦  

1 3 + 10 + 14 - + 18 - +20 - +26 +32 +40 +60 

3 6 + 15 + 19 - +23 - +28 - +35 +42 +50 +80 

6 10 + 19 +23 - +28 - +34 - +42 +52 +67 +97 

10 14 +23 +28 - +33 - +40 - +50 +64 +90 +130 

14 18 +23 +28 - +33 +39 +45 - +60 +77 +108 +150 

18 24 +28 +35 - +41 +47 +54 +63 +73 +98 +136 +188 

24 30 +28 +35 +41 +48 +55 +64 +75 +88 +118 +160 +218 

30 40 +34 +43 +48 +60 +68 +80 +94 +112 +148 +200 +274 

40 50 +34 +43 +54 +70 +81 +97 +114 +136 +180 +242 +325 

50 65 +41 +53 +66 +87 +102 +122 +144 +172 +226 +300 +405 

65 80 +43 +59 +75 +102 +120 +146 +174 +210 +274 +360 +480 

80 100 +51 +71 +91 + 124 +146 +178 +214 +258 +335 +445 +585 

100 120 +54 +79 +104 +144 +172 +210 +254 +310 +400 +525 +690 

120 140 +63 +92 +122 +170 +202 +248 +300 +365 +470 +620 +800 

140 160 +65 +100 +134 +190 +228 +280 +340 +415 +535 +700 +900 

160 180 +68 +108 +146 +210 +252 +310 +380 +465 +600 +780 +1000 

180 200 +77 + 122 + 166 +236 +284 +350 +425 +520 +670 +880 +1150 

200 225 +80 + 130 + 180 +258 +310 +385 +470 +575 +740 +960 +1250 



 

225 250 +84 + 140 +196 +284 +340 +425 +520 +640 +820 + 1050 + 1350 

250 280 +94 + 158 +218 +315 +385 +475 +580 +710 +920 +1200 + 550 

280 315 +98 + 70 +240 +350 +425 +525 +650 +790 +1000 +1300 +700 

315 355 +108 +90 +268 +390 +475 +590 +730 +900 +1150 +1500 +1900 

355 400 +114 +208 +294 +435 +530 +660 +820 +1000 +1300 +1650 +2100 

400 450 +126 +232 +330 +490 +595 +740 +920 +1100 +1450 +1850 +2400 

450 500 +132 +252 +360 +540 +660 +820 +1000 +1250 +1600 +2100 +2600 
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Table A.5: Lower deviation values for basic hole sizes up to 500mm. For Js the deviation is 

±IT. 

Tol. pos. A B C CD D E EF F FG G H Js 

Diameter  

> ≦  

1 3 +270 +140 +60 +34 +20 +14 +10 +6 +4 +2 0  

3 6 +270 +140 +70 +46 +30 +20 +14 +10 +6 +4 0  

6 10 +280 +150 +80 +56 +40 +25 +18 +13 +8 +5 0  

10 18 +290 +150 +95 - +50 +32 - +16 - +6 0  

18 30 +300 +160 +110 - +65 +40 - +20 - +7 0  

30 40 +310 +170 +120 - +80 +50 - +25 - +9 0  

40 50 +320 +180 +130 - +80 +50 - +25 - +9 0  

50 65 +340 +190 +140 - +100 +60 - +30 - +10 0  

65 80 +360 +200 +150 - +100 +60 - +30 - +10 0  

80 100 +380 +220 +170 - +120 +72 - +36 - +12 0  

100 120 +410 +240 +180 - +120 +72 - +36 - +12 0  

120 140 +460 +260 +200 - +145 +85 - +43 - +14 0  

140 160 +520 +280 +210 - +145 +85 - +43 - +14 0  

160 180 +580 +310 +230 - +145 +85 - +43 - +14 0  

180 200 +660 +340 +240 - +170 +100 - +50 - +15 0  

200 225 +740 +380 +260 - +170 +100 - +50 - +15 0  

225 250 +820 +420 +280 - +170 +100 - +50 - +15 0  

250 280 +920 +480 +300 - +190 +110 - +56 - +17 0  



 

280 315 +1050 +540 +330 - +190 +110 - +56 - +17 0  

315 355 +1200 +600 +360 - +210 +125 - +62 - +18 0  

355 400 +1350 +680 +400 - +210 +125 - +62 - +18 0  

400 450 +1500 +760 +440 - +230 +135 - +68 - +20 0  

450 500 + 1650 +840 +480 - +230 +135 - +68 - +20 0  

Table A.6: Upper deviation values for basic hole sizes up to 500mm. 

Tol. pos. J J J K K M M N N A A A A 

Tol. grade 6 7 8 to 8 fr. 9 to 8 fr. 9 to 8 fr. 9 5 6 7 8 

Diameter  

> ≦  

1 3 +2 +4 +6 0 0 -2 -2 -4 -4 0 0 0 0 

3 6 +5 +6 + 10 –1 + ∆ - –4 +∆ –4 –8 + ∆ 0 1 3 4 6 

6 10 +5 +8 + 12 –1 + ∆ – –6 + ∆ –6 –10 + ∆ 0 2 3 6 7 

10 18 +6 + 10 + 15 –1 + ∆ – –7 + ∆ –7 –12 + ∆ 0 3 3 7 9 

18 30 +8 +12 +20 –2 + ∆ – –8 + ∆ –8 –15 + ∆ 0 3 4 8 12 

30 50 + 10 + 14 +24 –2 + ∆ – –9 + ∆ –9 –17 + ∆ 0 4 5 9 14 

50 80 + 13 +18 +28 –2 + ∆ – –11 + ∆ –11 –20 + ∆ 0 5 6 11 16 

80 120 + 16 +22 +34 –3 + ∆ – –13 + ∆ –13 –23 + ∆ 0 5 7 13 19 

120 180 + 18 +26 +41 –3 + ∆ – –15 + ∆ –15 –27 + ∆ 0 6 7 15 23 

180 250 +22 +30 +47 –4 + ∆ – –17 + ∆ –17 –31 + ∆ 0 6 9 17 26 

250 315 +25 +36 +55 –4 + ∆ – –20 + ∆ –20 –34 + ∆ 0 7 9 20 29 

315 400 +29 +39 +60 –4 + ∆ – –21 + ∆ –21 –37 + ∆ 0 7 11 21 32 

400 500 +33 +43 +66 –5 + ∆ – –23 + ∆ –23 –40 + ∆ 0 7 13 23 34 
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Table A.7: Upper deviation values for basic hole sizes up to 500mm. For tolerance positions 

from P to ZC with tolerance grades up to (and including) 7 the same tolerance grade as from 

tolerance grade 8 should be used but with the appropriate ∆ value added. 

Tol. pos. P R S T u V X Y z ZA ZB ZC 

All tolerance grades 

Diameter  

> ≦  

1 3 -6 -10 -14 - -18 - -20 - -26 -32 -40 -60 

3 6 -12 -15 -19 - -23 - -28 - -35 -42 -50 -80 

6 10 -15 -19 -23 - -28 - -34 - -42 -52 -67 -97 

10 14 -18 -23 -28 - -33 - -40 - -50 -64 -90 -130 

14 18 -18 -23 -28 - -33 -39 -45 - -60 -77 -108 -150 

18 24 -22 -28 -35 - -41 -47 -54 -63 -73 -98 -136 -188 

24 30 -22 -28 -35 -41 -48 -55 -64 -75 -88 -118 -160 -218 

30 40 -26 -34 -43 -48 -60 -68 -80 -94 -112 -148 -200 -274 

40 50 -26 -34 -43 -54 -70 -81 -97 -114 -136 -180 -242 -325 

50 65 -32 -41 -53 -66 -87 -102 -122 -144 -172 -226 -300 -405 

65 80 -32 -43 -59 -75 -102 -120 -146 -174 -210 -274 -360 -480 

80 100 -37 -51 -71 -91 -124 -146 -178 -214 -258 -335 -445 -585 

100 120 -37 -54 -79 -104 -144 -172 -210 -254 -310 -400 -525 -690 

120 140 -43 -63 -92 -122 -170 -202 -248 -300 -365 -470 -620 -800 

140 160 -43 -65 -100 -134 -190 -228 -280 -340 -415 -535 -700 -900 

160 180 -43 -68 -108 -146 -210 -252 -310 -380 -465 -600 -780 -1000 



 

180 200 -50 -77 -122 -166 -236 -284 -350 -425 -520 -670 -880 -1150 

200 225 -50 -80 -130 -180 -258 -310 -385 -470 -575 -740 -960 -1250 

225 250 -50 -84 -140 -196 -284 -340 -425 -520 -640 -820 -1050 -1350 

250 280 -56 -94 -158 -218 -315 -385 -475 -580 -710 -920 -1200 -1550 

280 315 -56 -98 -170 -240 -350 -425 -525 -650 -790 -1000 -1300 -1700 

315 355 -62 -108 -190 -268 -390 -475 -590 -730 -900 -1150 -1500 -1900 

355 400 -62 -114 -208 -294 -435 -530 -660 -820 -1000 -1300 -1650 -2100 

400 450 -68 -126 -232 -330 -490 -595 -740 -920 -1100 -1450 -1850 -2400 

450 500 -68 -132 -252 -360 -540 -660 -820 -1000 -1250 -1600 -2100 -2600 
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Table A.8: Interference fits with hole and shaft base. 

Fit 

H7/r6 

or 

R7/h6 

H7/s6 

or 

S7/h6 

H7/t6 

or 

T7/h6 

H7/u6 

or 

U7/h6 

H7/v6 

or 

V7/h6 

Diameter  

> ≦ Min Max Min Max Min Max Min Max Min Max 

3 6 3 23 7 27   11 31   

6 10 4 28 8 32   13 37   

10 14 5 34 10 39   15 44   

14 18 5 34 10 39   15 44   

18 24 7 41 14 48   20 53 26 60 

24 30 7 41 14 48 20 54 27 61 34 68 

30 40 9 50 18 59 23 64 35 76 43 84 

40 50 9 50 18 59 29 70 45 86 56 97 

50 65 11 60 23 72 36 85 57 106 72 121 

65 80 13 62 29 78 45 94 72 121 90 139 

80 100 16 73 36 93 55 112 89 146 111 168 

100 120 19 76 44 101 69 126 109 166 137 194 

120 140 23 88 52 117 82 147 130 195 162 227 

140 160 25 90 60 125 94 159 150 215 188 253 

160 180 28 93 68 133 106 171 170 235 212 277 

180 200 31 106 76 151 120 185 190 265 238 313 

200 225 34 109 84 159 134 209 212 287 264 339 



 

225 250 38 113 94 169 150 225 238 313 294 369 

250 280 42 126 106 190 166 250 263 347 333 417 

280 315 46 130 118 202 188 272 298 382 373 457 

315 355 51 144 133 226 211 304 333 426 418 511 

355 400 57 150 151 244 237 330 378 471 473 566 

400 450 63 166 169 272 267 370 427 530 532 635 

450 500 69 172 189 292 297 400 477 580 597 700 
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Table A.9: Interference fits with hole and shaft base. 

Fit 

H7/x6 

or 

X7/h6 

H7/z6 

or 

z7/h6 

H7/za6 

or 

ZA7/h6 

H7/zb6 

or 

ZB7/h6 

H7/zc6 

or 

ZC7/h6 

Diameter  

> ≦ Min Max Min Max Min Max Min Max Min Max 

3 6 16 36 23 43 30 50 38 58 68 88 

6 10 19 43 27 51 37 61 52 76 82 106 

10 14 22 51 32 61 46 75 72 101 112 141 

14 18 27 56 42 71 59 88 90 119 132 161 

18 24 33 67 52 86 77 111 115 149 167 201 

24 30 43 77 67 101 97 131 139 173 197 231 

30 40 55 96 87 128 123 164 175 216 249 290 

40 50 72 113 111 152 155 196 217 258 310 341 

50 65 92 141 142 191 196 245 270 319 370 424 

65 80 116 165 180 229 244 293 330 379 450 499 

80 100 143 200 223 280 300 357 410 467 550 607 

100 120 175 232 275 332 365 422 490 547 655 712 

120 140 208 273 325 390 430 495 580 645 760 825 

140 160 240 305 375 440 495 560 660 725 860 925 

160 180 270 335 425 490 560 625 740 805 960 1025 

180 200 304 379 474 549 624 699 834 909 1104 1179 

200 225 339 414 529 604 694 769 914 989 1204 1279 



 

225 250 379 454 594 669 774 849 1004 1079 1304 1379 

250 280 423 507 658 742 868 952 1148 1232 1498 1582 

280 315 473 557 738 822 942 1052 1248 1332 1648 1732 

315 355 533 626 843 936 1093 1186 1443 1536 1843 1936 

355 400 603 696 943 1036 1243 1336 1593 1686 2043 2136 

400 450 677 780 1037 1140 1387 1490 1787 1890 2337 2440 

450 500 757 860 1187 1290 1537 1640 2037 2140 2537 2640 
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Appendix B Stress concentration factors 

The graphs of stress concentration factors on the next pages are taken from [2], [3] and [1], 

Please note that the curves are plots of estimated curve-fits given in the graphs. The curves are 

also shown outside the validity domain given on the graphs, this is done for illustration 

purposes. 

B.1 References 

[1] R. L. Norton. Machine design, an integrated approach, fifth edition. Prentice-Hall Inc., Upper 

Saddle River, N.J. 07458, 2014. 

[2] R. E. Peterson. Stress concentration design factors. John Wiley & Son, Inc., New York, USA, 

1953. 

[3] W. D. Pilkey. Peterson ’s Stress Concentration Factors. John Wiley and Sons, New York, 

USA, 2nd edition, 1997. 
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[billedtekst start]Figure B.1: Stress concentration factor Kt for a shaft in tension with a fillet, 

curve-fits taken from [3].[billedtekst slut] 
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[billedtekst start]Figure B.2: Stress concentration factor Kt for a shaft in bending with a fillet, 

curve-fits taken from [3]. Note that some of the curve-fits cross each other, this is not physical 

correct but due to the given curve-fits.[billedtekst slut] 
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[billedtekst start]Figure B.3: Stress concentration factor Kts for a shaft in torsion with a fillet, 

curve-fits taken from [3], Note that some of the curve-fits cross each other, this is not physical 

correct but due to the given curve-fits.[billedtekst slut] 
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[billedtekst start]Figure B.4: Stress concentration factor Kt for a shaft in tension with a U-

shaped groove, curve-fits taken from [1].[billedtekst slut] 
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[billedtekst start]Figure B.5: Stress concentration factor Kt for a shaft in bending with a U-

shaped groove, curve-fits taken from [1].[billedtekst slut] 
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[billedtekst start]Figure B.6: Stress concentration factor Kts for a shaft in torsion with a U-

shaped groove, curve-fits taken from [1].[billedtekst slut] 
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[billedtekst start]Figure B.7: Stress concentration factor Kt for a shaft in tension with a 

transverse hole. The shown curve is a curve-fit of the curve found in [3].[billedtekst slut] 
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[billedtekst start]Figure B.8: Stress concentration factor Kt for a shaft in bending with a 

transverse hole, curve-fits taken from [1].[billedtekst slut] 
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[billedtekst start]Figure B.9: Stress concentration factor Kts for a shaft in torsion with a 

transverse hole. The shown curves are curve-fits of the curves found in [2].[billedtekst slut] 
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[billedtekst start]Figure B.10: Stress concentration factor Kts for a shaft in torsion with a keyseat, 

curve-fit taken from [3].[billedtekst slut] 
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2D joint kinematics, 262 

A 

active coils, 29 

addendum modification, 226 

Archimedes spiral, 45 

ASME elliptic expression, 91 

axle, 81 

definition, 81 

B 

base tangent length, 233 

basic rack, 223 

bearing 

adjusted rating life, 61 

axial displacement, 58 

basic load ratings, 59 

basic rating life, 61 

CARB, 54 

dynamic bearing loads, 69 

equivalent dynamic bearing load, 69 

fluctuating bearing load, 70 

influence of operating temperature, 61 

life, 59 

life adjustment factor, 62, 65 

load carrying capacity, 59 

load conditions, 73 

loads, 54 

lubrication, 76 



 

misalignment, 58 

N design, 58 

NU design, 58 

radial location, 73 

requisite basic static load rating, 73 

requisite minimum load, 71 

selection of fit, 73 

SKF Life Theory, 64 

speed, 58 

static load rating, 72 

stationary bearing, 72 

stiffness, 58 

thrust, 55 

types, 53 

belt drives, 69, 200 

belts, 202 

forces, 205 

flat, 205 

including inertia, 208 

kinematics, 203 

length, 204 

optimization, 213 

speed ratio, 204 

stress (flat belt), 211 

V-belt, 207 

bending moment, 82 

bolt 

definition, 119 

loading dynamic, 140 

plastic, 140 

preload, 126 



 

self-locking, 129 

set/embedding, 137 

static and fatigue strength, 141 

tightening torque, 129 

bolt and nut, 124 

brakes, 187 

band, 197 

cone, 195 

disc, 194 

drum, 188 

self-energizing, 188 

hoist, 187 

normal pressure, 190, 192, 193 

wear, 190, 192, 193 

C 

capstan nuts, 124 

Cardan joints, 155 

Cardan shaft, 160 

Castigliano’s 2nd theorem, 46, 47, 94 

clutch, 170 

automatic, 181 

constant slip torque, 149 

directional (one-way), 151, 183 

dissipated energy, 176, 179 

friction, 171 friction radius, 174 

overrun, 151, 183 

positive (interlocking), 171 

slip with pulsating torque, 149 

soft starting, 149 

speed-sensitive, 149, 181 



 

torque transmission (static), 172 

transient slip, 174 
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complementary energy, 94, 95 

constant bearing load, 69 

coupling 

angular deviation, 148 

disengagement, 149 

engagement, 149 

flange, 153 

functional characteristics, 147 

introduction, 147 

misaligned shafts, 148 

overload, 168 

permanent elastic, 162 

permanent torsionally stiff, 152 

rigid, 152 

safety, 168 

self-aligning, 161 

shaft division, 148 

shaft elongation, 148 

split muff, 153 

torque, 167 

couplings, 147 

creep, 203 

critical shaft speeds, 95 

cross product, 84 

cylindrical coordinates, 105 

D 

damping, 166 

deflection diagram, 139 

degrees of freedom, 271 



 

dispersions during tightening, 137 

Dunkerleys method, 96 

E 

effective length, 82 

eigenfrequency, 95 

elastohydrodynamic lubrication, 256 

Euler’s differential equation, 106 

Eytelwein’s equation, 198, 206 

extended, 209 

F 

failure 

bearing failure, 101 

shear, 101 

failure modes, 83 

failure of positive connections, 101 

fatigue models, 92 

fillet radius, 121 

fit, 109 

diametral, 109 

radial, 109 

flat thread, 121 

flexibility, 131 

elastic, 131 

member plates, 132 

retained plates, 132 

force 

friction, 102 

frequency 

natural, 34 

friction clutch, 171 



 

frustum, 102 

G 

gear 

allowable contact stress, 248 

allowable tooth root stress, 252 

application factor, 241 

contact pitch, 235 

contact ratio, 231, 247 

contact ratio factor, 249 

dynamic factor, 242 

elasticity factor, 249 

external, 219 

geometry of involute gears, 219 

helical, 249 

helical gear, 233 

helix angle factor, 250, 253 

influence factors, 241 

internal, 219 

life factor, 250, 254 

load distribution factors, 244 

longitudinal load distributions, 244 

lubrication factor, 251 

mesh, 220 

nominal tangential load, 241 

radial clearance, 229 

ratio, 220 

relative notch sensitivity factor, 254 

relative surface condition factor, 254 

roughness factor, 251 

safety factor, 248 



 

safety factor for tooth root stress, 253 

size factor, 255 

speed factor, 251 

spur, 249 

strength, 241 

surface durability, 247 

tooth breakage, 252 

tooth form factor, 253 

transverse contact ratio, 232 

transverse load distribution factors, 245 

under-cutting, 225 

work hardening factor, 251 

zone factor, 249 

gear trains, 69 

Gerber parabola, 92 

Goodman diagram, 91, 102 

Goodman line, 92 

growing mean diameter of helix, 34 

gyroscopic forces, 84 

H 

handling deflection, 110 

helical gear, 233 

helix, 120 

hexagon nuts, 124 

I 

impulse coefficient, 165 

interference fit 
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cone, 102 

press and shrink fits, 104 

with spacers, 103 

ISO threads, 121 

trapezoidal, 121 

J 

joint 

2D, 264 

deflection, 130 

kinematics, 263 

point contact, 268 

revolute, 156, 264 

rolling, 270 

translational, 265 

universal 

acceleration, 160 

lack of output angle, 159 

speed ratio, 160 

K 

keys 

parallel, 100 

Woodruff, 100 

kinematics 

acceleration analysis, 272 

position analysis, 271 

velocity analysis, 272 

Knurled nuts, 124 



 

L 

load 

dynamic, 30 

fluctuating, 87, 91 

fully reversed, 87 

quasi-static load, 30 

repeated, 87 

static, 30 

loading cycles, 89 

loosening torque, 129, 130 

M 

mechanism 

design, 273 

Miners rule, 70 

module, 224 

modulus of elasticity, 85, 94, 106 

moment of inertia 

cross sectional, 85 

N 

natural frequency, 34 

Neuber’s constant, 88 

neutral axes, 85 

Newton-Raphson iteration, 272 

notch sensitivity, 88 

P 

pinned joints, 99 

pitch, 119, 224 

contact, 232 

pitch angle, 120 



 

pivot point, 193 

Poisson’s ratio, 106 

positive (interlocking) clutch, 149 

positive connections, 99 

prestressed shaft-hub connections, 100 

profile shift, 226 

R 

radial forces (volume force), 106 

radius 

of curvature, 85 

reference circle, 238 

relaxation, 30 

resilience, 131 

S 

S-N curve, 89 

Schmidt expression, 92 

screw 

motion, 119 

double threaded, 120 

single threaded, 120 

stressed cross-section, 121 

triple threaded, 120 

setting, 139 

shaft, 81 

definition, 82 

deflections, 94 

shear 

nominal stress, 88 

modulus, 94 

skew-matrix, 84 



 

SKF Life Theory, 64 

slenderness ratio, 82 

smoothing out of surfaces, 110 

Soderberg line, 91 

spindle, 120 

splined joints, 100 

spring, 25 

Belleville, 40 

buckling, 34 

buckling limit, 35 

compression, 34 

coned-disk, 40 

deflection, 28 

dynamically loaded cold-formed compression, 37 

dynamically loaded cold-formed extension, 38 

dynamically loaded hot-formed compression, 37 

dynamically loaded hot-formed extension, 39 

ends of extension springs, 39 

extension, 37 

helical, 26 

helical torsion, 42 

index, 33 

optimum, 33 

rate, 28, 41, 44 

spiral, 45 

clamped outer end, 45 

simply supported outer end, 47 

statically loaded cold-formed, 36 

statically loaded cold-formed extension, 38 
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statically loaded hot-formed compression, 36 

statically loaded hot-formed extension, 38 

stress, 29 

static equilibrium in 3D, 84 

static loading, 83 

strain 

normal, 85 

stress 

alternating, 93 

amplitude, 87 

concentration, 87 

concentration factors, 283 

curvature correction factor, 29 

endurance limit, 89 

corrected, 90 

uncorrected, 90 

fatigue stress concentration factors, 88 

in spring, 34 

mean, 87, 93 

nominal, 88 

theoretical stress concentration factors, 88 

T 

taper-pinned joints, 99 

thermal expansion, 110 

thread 

metric ISO, 120 

types, 120 

V-Thread, 120 

threaded fasteners, 119 



 

tightening torque, 129, 130 

tolerance tables, 275 

tolerances, 1 tooth 

breakage, 252 

shapes, 222 

involute, 223 

thickness, 226 

torque, 82 

limit, 103 

transmitted, 110 

torque-sensitive clutches, 149 

torsional stiffness factor, 94 

transformation matrix, 155 

transverse pressure angle, 228 

Tresca, 83 

U 

uniform pressure model, 196 

uniform wear model, 196 

universal joints, 147, 155 

V 

V-belt, 207 

VDI, 126 

von Mises, 83, 86, 129 

W 

washers, 125 

Wöhler curve, 89 

 


